Obituary of Jack K. Hale

  • Shui-Nee Chow
  • John Mallet-ParetEmail author


  1. 1.
    Billotti J.E., LaSalle J.P.: Dissipative periodic processes. Bull. Am. Math. Soc. 77, 1082–1088 (1971)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chafee N.: Jack K. Hale: A brief biography. J. Differ. Equ. 168, 3–9 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Fusco G., Hale J.K.: Slow-motion manifolds, dormant instability, and singular perturbations. J. Dyn. Differ. Equ. 1, 75–94 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Hale J.K.: Integral manifolds of perturbed differential systems. Ann. Math. 73, 496–531 (1961)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Hale J.K.: Dynamical systems and stability. J. Math. Anal. Appl. 26, 39–59 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hale, J.K.: Functional Differential Equations. Applied Mathematical Sciences, vol. 3, 238 pp. Springer, New York (1971)Google Scholar
  7. 7.
    Hale J.K., Infante E.F.: Extended dynamical systems and stability theory. Proc. Natl. Acad. Sci. U.S.A. 58, 405–409 (1967)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hale J.K., LaSalle J.P.: Differential equations: linearity vs. nonlinearity. SIAM Rev. 5, 249–272 (1963)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hale J.K., Meyer K.R.: A class of functional equations of neutral type. Mem. Am. Math. Soc. 76, 65 (1967)MathSciNetGoogle Scholar
  10. 10.
    Hale J.K., Lin X.-B., Raugel G.: Upper semicontinuity of attractors for approximations of semigroups and partial differential equations. Math. Comp. 50, 89–123 (1988)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Hale J.K., Raugel G.: Lower semicontinuity of attractors of gradient systems and applications. Ann. mat. Pura Appl. 154, 281–326 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hale J.K., Raugel G.: A modified Poincaré method for the persistence of periodic orbits and applications. J. Dyn. Differ. Equ. 22, 3–68 (2010)zbMATHCrossRefGoogle Scholar
  13. 13.
    Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional-Differential Equations. Applied Mathematical Sciences, vol. 99, 447 pp. Springer, New York (1993)Google Scholar
  14. 14.
    Hale J.K., LaSalle J.P., Slemrod M.: Theory of a general class of dissipative processes. J. Math. Anal. Appl. 39, 177–191 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840, 348 pp. Springer, New York (1981)Google Scholar
  16. 16.
    Yi, Y.: An interview with Jack K. Hale. Dynamical Systems Magazine. Issue of January 2004

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Division of Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations