Exact Explicit Peakon and Periodic Cusp Wave Solutions for Several Nonlinear Wave Equations

  • Jibin LiEmail author


Using the method of dynamical systems for six nonlinear wave equations, the exact explicit parametric representations of the solitary cusp wave solutions and the periodic cusp wave solutions are given. These parametric representations follow that when travelling systems corresponding to these nonlinear wave equations has a singular straight line, under some parameter conditions, nonanalytic travelling wave solutions must appear.


Nonlinear wave equation Solitary wave Periodic wave Exact explicit solution Smoothnees of wave 


  1. 1.
    Byrd P.F., Fridman M.D.: Handbook of Elliptic Integrals for Engineers and Sciensists. Springer, Berlin (1971)Google Scholar
  2. 2.
    Camassa R., Holm D.D., Hyman J.M.: A new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)CrossRefGoogle Scholar
  3. 3.
    Jibin L., Huihui D.: On the Study of Singular Nonlinear Travelling Wave Equations: Dynamical System Approach. Science Press, Beijing (2007)Google Scholar
  4. 4.
    Jibin L., Jiahong W., Huaiping Z.: Travelling waves for an integrable higher order KdV type wave Equations. Int. J. Bifurcat. Chaos 16(8), 2235–2260 (2006)CrossRefGoogle Scholar
  5. 5.
    Jibin, L., Guanrong, C.: On a class of singular nonlinear travelling wave equations. Int. J. Bifurcat. Chaos 17(11), 4049–4065 (2007)CrossRefzbMATHGoogle Scholar
  6. 6.
    Li Y.A.: Weak solutions of generalized Boussinesq system. J. Dyn. Diff. Equat. 11(4), 625–669 (1999)zbMATHCrossRefGoogle Scholar
  7. 7.
    Lopes O.: Stability of peakons for the generalized Camassa-Holm equation. Electro. J. Diff. Equat. 2002(5), 1–12 (2002)MathSciNetGoogle Scholar
  8. 8.
    Morrison T.P., Parkes E.J., Vakhnenko V.O.: The N-loop soliton solution of the Vakhnenko equation. Nonlinearity 12, 1427–1437 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Morrison T.P., Parkes E.J.: The N-loop soliton solution of the modified Vakhnenko equation (a new nonlinear evolution equation). Chaos, Solitons Fractals 16, 13–26 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Parkes E.J.: Explicit solutions of the reduced Ostrovsky equation. Chaos, Solitons Fractals 31, 602–610 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Rosenau P., Hyman J.M.: Compactons: solitons with finite wavelength. Phys. Rev. Lett. 70, 564–567 (1993)zbMATHCrossRefGoogle Scholar
  12. 12.
    Rosenau P.: On nonanalytic solitary waves formed by a nonlinear dispersion. Phys. Lett. A 230, 305–318 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Rosenau P.: Compact and noncompact dispersive structures. Phys. Lett. A 275(3), 193–203 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Sakovich A., Sakovich S.: Solitary wave solutions of the short pulse equation. J. Phys. A Math. Gen. 39, L361–367 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Stepanyants Y.A.: On stationary solutions of the reduced Ostrovsky equation: periodic wave, compactons and compound solitons. Chaos Solitons Fractals 28, 193–204 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Tzirtzilakis E., Marinakis V., Apokis C., Bountis T.: Soliton-like solutions of higher order wave equations of the Korteweg-de-Vries Type. J. Math. Phys. 43(12), 6151–6161 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Tzirtzilakis E., Xenos M., Marinakis V., Bountis T.: Interactions and stability of solitary waves in shallow water. Chaos, Solitons Fractals 14, 87–95 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Vakhnenko V.O.: High-frequency soliton-like waves in a relaxing medium. J. Math. Phys. 40, 2011–2020 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Vakhnenko V.O., Parkes E.J.: The two loop soliton solution of the Vakhnenko equation. Nonlinearity 11, 1457–1464 (1998)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of MathematicsZhejiang Normal UniversityJinhuaPeople’s Republic China
  2. 2.Center for Nonlinear Science StudiesKunming University of Science and TechnologyKunmingPeople’s Republic China

Personalised recommendations