Advertisement

Journal of Dynamics and Differential Equations

, Volume 19, Issue 4, pp 895–914 | Cite as

Irregular Behavior of Solutions for Fisher’s Equation

  • Eiji YanagidaEmail author
Article

This paper is concerned with the irregular behavior of solutions for Fisher’s equation when initial data do not decay in a regular way at the spatial infinity. In the one-dimensional case, we show the existence of a solution whose profile and average speed are not convergent. In the higher-dimensional case, we show the existence of expanding fronts with arbitrarily prescribed profiles. We also show the existence of irregularly expanding fronts whose profile varies in time. Proofs are based on some estimate of the difference of two distinct solutions and a comparison technique.

Keywords

Fisher’s equation irregular behavior expanding front 

Mathematics Subject Classification

35B99 35K15 35K57 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aronson D.G., Weinberger H. (1978). Multidimensional nonlinear diffusions arising in population genetics. Adv. Math. 30, 33–76zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Berestycki H., Hamel F. (2002). Front propagation in periodic excitable media. Comm. Pure Appl. Math. 55, 949–1032zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Berestycki H., Hamel F., Nadirashvili N. (2005). The speed of propagation for KPP type problems, I. Periodic framework. J. Eur. Math. Soc. 7, 173–213zbMATHMathSciNetGoogle Scholar
  4. 4.
    Bramson, M. (1983). Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Amer. Math. Soc. 44, iv+190.Google Scholar
  5. 5.
    Collet P., Eckmann J.-P. (2002). Space-time behaviour in problems of hydrodynamic type: a case study. Nonlinearity. 5, 1265–1302CrossRefMathSciNetGoogle Scholar
  6. 6.
    Freidlin, M. (1995). Wave front propagation for KPP type equations. Surveys Appl. Math. 2, 1–62, Plenum, New York.Google Scholar
  7. 7.
    Ebert U., van Saarloos W. (2000). Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts. Phys. D 146, 1–99zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hamel F., Nadirashvili N. (2001). Travelling fronts and entire solutions of the Fisher-KPP equation in R N. Arch. Ration. Mech. Anal. 57, 91–163CrossRefMathSciNetGoogle Scholar
  9. 9.
    Jones C.K.R.T. (1983). Spherically symmetric solutions of a reaction–diffusion equation. J. Differ. Equ. 49, 142–169zbMATHCrossRefGoogle Scholar
  10. 10.
    Moet H.J.K. (1979). A note on the asymptotic behavior of solutions of the KPP equation. SIAM J. Math. Anal. 10, 728–732zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ninomiya H., Taniguchi M. (2001). Stability of traveling curved fronts in a curvature flow with driving force. Methods Appl. Anal. 8, 429–449zbMATHMathSciNetGoogle Scholar
  12. 12.
    Poláčik P., Yanagida E. (2003). On bounded and unbounded global solutions of a supercritical semilinear heat equation. Math. Annalen. 327, 745–771CrossRefGoogle Scholar
  13. 13.
    Poláčik P., Yanagida E. (2004). Nonstabilizing solutions and grow-up set for a supercritical semilinear diffusion equation. Diff. Int. Eqs. 17, 535–548Google Scholar
  14. 14.
    van Saarloos W. (1988). Front propagation into unstable state: marginal stability as a dynamical mechanism for velocity selection. Phys. Rev. A 37(3): 211–229CrossRefMathSciNetGoogle Scholar
  15. 15.
    Sattinger D.H. (1976). On the stability of waves of nonlinear parabolic systems. Adv. Math. 22, 312–355zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Yagisita H. (2001). Nearly spherically symmetric expanding fronts in a bistable reaction–diffusion equation. J. Dynam. Differ. Equ. 13, 323–353zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Mathematical InstituteTohoku UniversitySendaiJapan

Personalised recommendations