Invariant Manifolds for Random Dynamical Systems with Slow and Fast Variables

  • Björn SchmalfussEmail author
  • Klaus R. Schneider

We consider random dynamical systems with slow and fast variables driven by two independent metric dynamical systems modeling stochastic noise. We establish the existence of a random inertial manifold eliminating the fast variables. If the scaling parameter tends to zero, the inertial manifold tends to another manifold which is called the slow manifold. We achieve our results by means of a fixed point technique based on a random graph transform. To apply this technique we need an asymptotic gap condition.


Random dynamical systems fast–slow system slow manifold inertial manifold 

1991 Mathematics Subject Classifications

37H10 37L25 70K70 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold L. (1998) Random Dynamical Systems. Springer, New YorkzbMATHGoogle Scholar
  2. 2.
    Bensoussan A., Flandoli F. (1995) Stochastic inertial manifold. Stochastics Stochastics Rep. 53(1–2): 13–39zbMATHMathSciNetGoogle Scholar
  3. 3.
    Berglund N., Gentz B. (2003) Geometric singular perturbation theory for stochastic differential equations. J. Diff. Equat. 191, 1–54zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Butuzov V.F., Kalachev L. V., Vasil’eva A.B. (1995) The Boundary Function Method for Singular Perturbation Problems. SIAM Studies in Applied Mathematics, PhiladelphiazbMATHGoogle Scholar
  5. 5.
    Castaing, C., Valadier, M. (1977). Convex Analysis and Measurable Multifunctions. Lect. Notes in Math. 580. Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  6. 6.
    Da Prato G., Debussche A. (1996) Construction of stochastic inertial manifolds using backward integration. Stochastics Stochastics Rep. 59(3–4): 305–324zbMATHMathSciNetGoogle Scholar
  7. 7.
    Duan J., Lu K., Schmalfuß B. (2003). Invariant manifolds for stochastic partial differential equations. Ann. Probab. 31, 2109–2135zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Eckhaus W. (1973). Matched Asymptotic Expansions and Singular Perturbations. North-Holland Publishing Comp., AmsterdamzbMATHGoogle Scholar
  9. 9.
    Fenichel N. (1971) Persistence and smoothness of invariant manifolds for flows. Math. J., Indiana Univ. 21, 193–226zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fenichel N. (1979) Geometric singular perturbation theory for ordinary differential equations. J. Diff. Equat. 31, 53–98zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Girya T.V., Chueshov I.D. (1995) Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems. Sb. Math. 186(1): 29–45zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hadamard J. (1901) Sur l’iteration et les solutions asymptotiques des equations differenttielles. Bull. Soc. Math. France 29, 224–228Google Scholar
  13. 13.
    Handrock-Meyer S., Kalachev L.V., Schneider K.R. (2001) A method to determine the dimension of long-time dynamics in multi-scale systems. J. Math. Chem. 30(2): 133–160zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kabanov, Y., and Pergamenshchikov, S. (2003). Two–Scale Stochastic Systems. Asymptotic Analysis and Control. Stochstic Modelling and Applied Probability 49. Springer, Berlin.Google Scholar
  15. 15.
    Kevorkian J.K., Cole J.D. (1996) Multiple Scale and Singular Perturbation Methods. Springer-Verlag, New-York, BerlinzbMATHGoogle Scholar
  16. 16.
    Koksch N., Siegmund S. (2002) Pullback attracting inertial manifolds for nonautonomous dynamical systems. J. Dyn. Diff. Equat. 14, 889–441zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lagerstrom, P. A. (1988). Matched Asymptotic Expansions. Applied Mathematical Sciences 76, Springer-Verlag, New York.Google Scholar
  18. 18.
    Oono Y. (2000) Renormalization and asymptotics. RIMS Kokyuroku 1134, 1–18zbMATHMathSciNetGoogle Scholar
  19. 19.
    Pötzsche C., Siegmund S. (2004). C m-smoothness of invariant fiber bundles. Topol. Meth. Nonlinear Anal. 24(1): 107–145zbMATHGoogle Scholar
  20. 20.
    Sanders J.A., Verhulst F. (1985) Averaging Methods in Nonlinear Dynamical Systems. Springer-Verlag, New YorkzbMATHGoogle Scholar
  21. 21.
    Schmalfuß B. (1998) A random fixed point theorem and the random graph transformation. J. Math. Anal. Appl. 225(1): 91–113zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Schneider K.R., Wilhelm T. (2000) Model reduction by extended quasi-steady-state approximation. J. Math. Biol. 40, 443–450zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Segel L.A. (1989) On the validity of the steady state assumption of enzyme kinetics. SIAM Rev. 31, 446–477zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Strygin V.V., Sobolev V.A. (1988) Separation of Motions by the Method of Integral Manifolds (in Russian). Nauka, MoscowGoogle Scholar
  25. 25.
    Wiggins S. (1994) Normally Hyperbolic Invariant Manifolds in Dynamical Systems. Springer-Verlag, New YorkzbMATHGoogle Scholar
  26. 26.
    Zeidler E. (1985) Nonlinear Functional Analysis and its Applications, Vol. 1. Springer-Verlag, Berlin, Heidelberg, New YorkzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institute for MathematicsUniversity of PaderbornPaderbornGermany
  2. 2.Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany

Personalised recommendations