Journal of Dynamics and Differential Equations

, Volume 19, Issue 2, pp 497–560

Center Manifold Theory for Functional Differential Equations of Mixed Type

Article

We study the behaviour of solutions to nonlinear autonomous functional differential equations of mixed type in the neighbourhood of an equilibrium. We show that all solutions that remain sufficiently close to an equilibrium can be captured on a finite dimensional invariant center manifold, that inherits the smoothness of the nonlinearity. In addition, we provide a Hopf bifurcation theorem for such equations. We illustrate the application range of our results by discussing an economic life-cycle model that gives rise to functional differential equations of mixed type.

Keywords

Mixed type functional differential equations lattice differential equations life-cycle model center manifold Hopf bifurcation finite dimensional reduction advanced and retarded arguments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abell K.A., Elmer C.E., Humphries A.R., Vleck E.S.V. (2005). Computation of mixed type functional differential boundary value problems. SIAM J. Appl. Dyn. Sys. 4, 755–781MATHCrossRefGoogle Scholar
  2. 2.
    Bart H., Gohberg I., Kaashoek M.A. (1986). Wiener-Hopf factorization, inverse Fourier transforms and exponentially dichotomous operators. J. Funct. Anal. 68, 1–42MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bates P.W., Chen X., Chmaj A. (2003). Traveling waves of bistable dynamics on a lattice. SIAM J. Math. Anal. 35, 520–546MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bates P.W., Chmaj A. (1999). A discrete convolution model for phase transitions. Arch. Rational Mech. Anal. 150, 281–305MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bell J. (1981). Some threshold results for models of myelinated nerves. Math. Biosci. 54, 181–190MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Benhabib J., Nishimura K. (1979). The Hopf bifurcation and the existence and stability of closed orbits in multisector models of optimal economic growth. J. Econ. Theory 21, 421–444MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Benzoni-Gavage S. (1998). Semi-discrete shock profiles for hyperbolic systems of conservation laws. Physica D 115, 109–124MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Benzoni-Gavage S., Huot P. (2002). Existence of semi-discrete shocks. Discrete Contin. Dyn. Syst. 8, 163–190MATHMathSciNetGoogle Scholar
  9. 9.
    Benzoni-Gavage S., Huot P., Rousset F. (2003). Nonlinear stability of semidiscrete shock waves. SIAM J. Math. Anal. 35, 639–707MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Cahn J.W. (1960). Theory of crystal growth and interface motion in crystalline materials. Acta Met. 8, 554–562CrossRefGoogle Scholar
  11. 11.
    Cahn J.W., Mallet-Paret J., Van Vleck E.S. (1999). Traveling wave solutions for systems of ODE’s on a two-dimensional spatial lattice. SIAM J. Appl. Math 59, 455–493MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Chi H., Bell J., Hassard B. (1986). Numerical solution of a nonlinear advance-delay-differential equation from nerve conduction theory. J. Math. Biol. 24, 583–601MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Chow S.N., Mallet-Paret J., Shen W. (1998). Traveling waves in lattice dynamical systems. J. Diff. Eq. 149, 248–291MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Chua L.O., Roska T. (1993). The CNN paradigm. IEEE Trans. Circuits Syst. 40, 147–156MATHMathSciNetGoogle Scholar
  15. 15.
    Crandall M.C., Rabinowitz P.H. (1978). The Hopf bifurcation theorem in infinite dimensions. Arch. Rat. Mech. Anal. 67, 53–72CrossRefMathSciNetGoogle Scholar
  16. 16.
    d’Albis, H. and Augeraud-Veron, E. (2004). Competitive growth in a life-cycle model: existence and dynamics. Preprint.Google Scholar
  17. 17.
    Diekmann O., van Gils S.A., Verduyn-Lunel S.M., Walther H.O. (1995). Delay Equations. Springer-Verlag, New YorkMATHGoogle Scholar
  18. 18.
    Elmer C.E., Van Vleck E.S. (2002). A variant of Newton’s method for the computation of traveling waves of bistable differential-difference equations. J. Dyn. Diff. Eq. 14, 493–517MATHCrossRefGoogle Scholar
  19. 19.
    Elmer C.E., Van Vleck E.S. (2005). Dynamics of monotone travelling fronts for discretizations of Nagumo PDEs. Nonlinearity 18, 1605–1628MATHGoogle Scholar
  20. 20.
    Erneux T., Nicolis G. (1993). Propagating waves in discrete bistable reaction-diffusion systems. Physica D 67, 237–244MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Fife P., McLeod J. (1977). The approach of solutions of nonlinear diffusion equations to traveling front solutions. Arch. Rat. Mech. Anal. 65, 333–361MathSciNetGoogle Scholar
  22. 22.
    Frasson M.V.S., Verduyn-Lunel S.M. (2003). Large time behaviour of linear functional differential equations. Integral Eq. Operat. Theory 47, 91–121MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Hankerson D., Zinner B. (1993). Wavefronts for a cooperative tridiagonal system of differential equations. J. Dyn. Diff. Eq. 5, 359–373MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Härterich J., Sandstede B., Scheel A. (2002). Exponential dichotomies for linear non-autonomous functional differential equations of mixed type. Indiana Univ. Math. J. 51, 1081–1109MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Hewitt E., Stromberg K. (1965). Real and Abstract Analysis, Springer-Verlag, BerlinMATHGoogle Scholar
  26. 26.
    Hupkes H.J., Verduyn-Lunel S.M. (2005). Analysis of Newton’s method to compute travelling waves in discrete media. J. Dyn. Diff. Eq. 17, 523–572MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Iooss G. (2000). Traveling waves in the Fermi–Pasta–Ulam lattice. Nonlinearity 13, 849–866MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Iooss G., Kirchgässner K. (2000). Traveling waves in a chain of coupled nonlinear oscillators. Comm. Math. Phys. 211, 439–464MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Kaashoek M., Verduyn-Lunel S.M. (1994). An integrability condition on the resolvent for hyperbolicity of the semigroup. J. Diff. Eq. 112, 374–406MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Keener J., Sneed J. (1998). Mathematical Physiology, Springer-Verlag, New YorkMATHGoogle Scholar
  31. 31.
    Keener J.P. (1987). Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47, 556–572MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Laplante J.P., Erneux T. (1992). Propagation failure in arrays of coupled bistable chemical reactors. J. Phys. Chem. 96:4931–4934CrossRefGoogle Scholar
  33. 33.
    Mallet-Paret, J. (1996). Spatial patterns, spatial chaos and traveling waves in lattice differential equations. In Stochastic and Spatial Structures of Dynamical Systems, Royal Netherlands Academy of Sciences. Proceedings, Physics Section. Series 1, Vol. 45. Amsterdam, pp. 105–129.Google Scholar
  34. 34.
    Mallet-Paret J. (1999). The Fredholm alternative for functional differential equations of mixed type. J. Dyn. Diff. Eq. 11, 1–48MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Mallet-Paret J. (1999). The global structure of traveling waves in spatially discrete dynamical systems. J. Dyn. Diff. Eq. 11, 49–128MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Mallet-Paret, J. (2001). Crystallographic pinning: direction dependent pinning in lattice differential equations. Preprint.Google Scholar
  37. 37.
    Mallet-Paret, J. and Verduyn-Lunel, S. M., (to appear) Exponential dichotomies and Wiener–Hopf factorizations for mixed-type functional differential equations. J. Diff. Eq.Google Scholar
  38. 38.
    Mielke A. (1986). A reduction principle for nonautonomous systems in infinite-dimensional spaces. J. Diff. Eq. 65, 68–88MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Mielke A. (1994). Floquet theory for, and bifurcations from spatially periodic patterns. Tatra Mountains Math. Publ. 4, 153–158MATHMathSciNetGoogle Scholar
  40. 40.
    Rustichini A. (1989). Hopf bifurcation for functional-differential equations of mixed type. J. Dyn. Diff. Eq. 1, 145–177MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Vanderbauwhede A., Iooss G. (1992). Center manifold theory in infinite dimensions. Dyn. Reported: Expositions Dyn. Sys. 1, 125–163MathSciNetGoogle Scholar
  42. 42.
    Vanderbauwhede A., van Gils S.A. (1987). Center manifolds and contractions on a scale of banach spaces. J. Funct. Anal. 72, 209–224MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Widder D.V. (1946). The Laplace Transform. Princeton Univ. Press, Princeton NJMATHGoogle Scholar
  44. 44.
    Wu J., Zou X. (1997). Asymptotic and periodic boundary value problems of mixed FDE’s and wave solutions of lattice differential equations. J. Diff. Eq. 135, 315–357MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Zinner B. (1992). Existence of traveling wavefront solutions for the discrete Nagumo equation. J. Diff. Eq. 96, 1–27MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Zinner B., Harris G., Hudson W. (1993). Traveling wavefronts for the discrete Fisher’s equations. J. Diff. Eq. 105, 46–62MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Mathematisch InstituutUniversiteit LeidenLeidenNetherlands

Personalised recommendations