Metastability in Chemotaxis Models

  • A. B. Potapov
  • T. HillenEmail author


We consider pattern formation in a chemotaxis model with a vanishing chemotaxis coefficient at high population densities. This model was developed in Hillen and Painter (2001, Adv. Appli. Math. 26(4), 280–301.) to model volume effects. The solutions show spatio-temporal patterns which allow for ultra-long transients and merging or coarsening. We study the underlying bifurcation structure and show that the existence time for the pseudo- structures exponentially grows with the size of the system. We give approximations for one-step steady state solutions. We show that patterns with two or more steps are metastable and we approximate the two-step interaction using asymptotic expansions. This covers the basic effects of coarsening/merging and dissolving of local maxima. These effects are similar to pattern dynamics in other chemotaxis models, in spinodal decomposition of Cahn–Hilliard models, or to metastable patterns in microwave heating models.


Chemotaxis volume filling metastability transients 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alikakos, N., Bates, P.W., Fusco, P. 1991Slow motion for the Cahn-Hilliard equation in one space dimensionJ. Differential Equations9081135CrossRefGoogle Scholar
  2. 2.
    Crutchfield, , J., P., Kaneko, , K.,  1998Are attractors relevant to turbulence?Phys. Rev. Lett.6027152718CrossRefGoogle Scholar
  3. 3.
    Dolak, Y., Hillen, T. 2003Cattaneo models for chemotaxis, numerical solution and pattern formation. J. MathBiol.46153170Google Scholar
  4. 4.
    Dolak, Y., Schmeiser, C. 2004The Keller-Segel model with small diffusionANUM-Preprint10122Google Scholar
  5. 5.
    Grinfeld, M., Novick-Cohen, A. 1999The viscous Cahn–Hilliard equation: Morse decomposition and structure of the global attractorTrans. Am. Math. Soc.35123752406CrossRefGoogle Scholar
  6. 6.
    Hillen, T., Painter, K. 2001Global existence for a parabolic chemotaxis model with prevention of overcrowdingAdv. Appl. Math.26280301CrossRefGoogle Scholar
  7. 7.
    Horstmann, D. (2003). From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I. Jahresbericht der DMV 105(3), 103–165.Google Scholar
  8. 8.
    Horstmann, D. 2004From 1970 until present: The Keller-Segel model in chemotaxis and its consequences IIJahresbericht der DMV1065169Google Scholar
  9. 9.
    Iron, D., Ward, J. 2004The stability and dynamics of hot-spot solutions for two one-dimensional microwave heating modelsAnal. Appl.22177CrossRefGoogle Scholar
  10. 10.
    Keller, E.F., Segel, L.A. 1971Model for chemotaxisJ. Theor. Biol.30225234PubMedGoogle Scholar
  11. 11.
    Murray, J.D. 1989Mathematical BiologySpringerBerlinGoogle Scholar
  12. 12.
    Painter, K., Hillen, T. 2002Volume-filling and quorum-sensing in models for chemosensitive movementCan. Appl. Math. Q.10501543Google Scholar
  13. 13.
    Patlak, C.S. 1953Random walk with persistence and external biasBull. Math. Biophys.15311338Google Scholar
  14. 14.
    Schaaf, R. 1985Stationary solutions of chemotaxis systemsTrans. AMS292531556Google Scholar
  15. 15.
    Sleeman, B.D., Ward, M.J., Wei, J.C. 2005The Existence and Stability of Spike Patterns in a Chemotaxis Model. SIAMJ. Appl. Math.65790817MathSciNetGoogle Scholar
  16. 16.
    Sun, X., Ward, M. 2000Dynamics and coarsening of interfaces for the viscous Cahn-Hilliard equation in one spatial dimensionStud. Appl. Math.105203234CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Centre for Mathematical BiologyUniversity of AlbertaAlbertaCanada

Personalised recommendations