Advertisement

Asymptotic Stability for a Viscoelastic Equation with Nonlinear Damping and Very General Type of Relaxation Functions

  • Farida Belhannache
  • Mohammad M. AlgharabliEmail author
  • Salim A. Messaoudi
Article
  • 47 Downloads

Abstract

In this paper, we consider a viscoelastic equation with a nonlinear frictional damping and a relaxation function satisfying g′(t) ≤ −ξ(t)G(g(t)). Using the Galaerkin method, we establish the existence of the solution and prove an explicit and general decay rate results, using the multiplier method and some properties of the convex functions. This work generalizes and improves earlier results in the literature. In particular, those of Messaoudi (2016) and Mustafa (Math Methods Appl Sci. 2017;V41:192–204).

Keywords

Viscoelasticity Optimal decay Relaxation functions Convexity 

Mathematics Subject Classification (2010)

35B35 35L55 75D05 74D10 93D20 

Notes

Acknowledgments

The authors thank an anonymous referee for his/her very careful reading and valuable suggestions. This work was funded by KFUPM under Project #IN161006.

Funding information

This work was funded by KFUPM under Project #IN161006.

References

  1. 1.
    Alabau-Boussouira F, Cannarsa P. A general method for proving sharp energy decay rates for memory-dissipative evolution equations. CR Acad Sci Paris Ser I 2009; 347:867–72.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arnold V. Mathematical methods of classical mechanics. New York: Springer; 1989.CrossRefGoogle Scholar
  3. 3.
    Barreto R, Lapa E, Munoz Rivera J. Decay rates for viscoelastic plates with memory. J Elasticity 1996;44#(1):61–87.MathSciNetzbMATHGoogle Scholar
  4. 4.
    Berrimi S, Messaoudi S. Existence and decay of solutions of a viscoelastic equation with a nonlinear source. Nonl Anal 2006;64:2314–31.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cabanillas E, Munoz Rivera J. Decay rates of solutions of an anisotropic inhomogeneous n-dimensional viscoelastic equation with polynomial decaying kernels. Comm Math Phys 1996;177:583–602.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cavalcanti M, Domingos Cavalcanti V, Soriano J. Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping. E J Differ Eq 2002;44:1–14.zbMATHGoogle Scholar
  7. 7.
    Cavalcanti M, Oquendo H. Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J Control Optim 2003;42(4):1310–24.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cavalcanti M, Cavalcanti V, Lasiecka I, Nascimento FA. Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects. Discrete Contin Dyn Syst Ser B 2014;19(7):1987–2012.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cavalcanti M, Cavalcanti A, Lasiecka I, Wang X. Existence and sharp decay rate estimates for a von Karman system with long memory. Nonlin Anal: Real World Appl 2015;22:289–306.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cavalcanti M, Domingos Cavalcanti V, Lasiecka I, Webler C. 2016. Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density. Advances in Nonlinear Analysis.Google Scholar
  11. 11.
    Fabrizio M, Polidoro S. Asymptotic decay for some differential systems with fading memory. Appl Anal 2002;81(6):1245–64.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Guesmia A. Asymptotic stability of abstract dissipative systems with infinite memory. J Math Anal Appl 2011;382:748–60.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Han X, Wang M. General decay of energy for a viscoelastic equation with nonlinear damping. Math Meth Appl Sci 2009;32(3):346–58.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lacroix-Sonrier MT. 1998. Distrubutions espace de sobolev application. Ellipses Edition Marketing S.A.Google Scholar
  15. 15.
    Lasiecka I, Tataru D. Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Diff Integral Equ 1993;6(3):507–33.MathSciNetzbMATHGoogle Scholar
  16. 16.
    Lasiecka I, Messaoudi S, Mustafa M. Note on intrinsic decay rates for abstractwave equations with memory. J Math Phys 2013;54:031504.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lasiecka I, Wang X. Intrinsic decay rate estimates for semilinear abstract second order equations with memory. In: New prospects in direct, inverse and control problems for evolution equations springer INdAM series. Cham: Springer; 2014, vol 10. p 271–303.Google Scholar
  18. 18.
    Lions J. Quelques methodes de resolution des problemes aux limites non lineaires, 2nd ed. Paris: Dunod; 2002.zbMATHGoogle Scholar
  19. 19.
    Liu W. General decay of solutions to a viscoelastic wave equation with nonlinear localized damping. Ann Acad Sci Fenn Math 2009;34(1):291–302.MathSciNetzbMATHGoogle Scholar
  20. 20.
    Liu WJ. General decay rate estimate for a viscoelastic equation with weakly nonlinear time-dependent dissipation and source terms. J Math Phys. 2009;50(11), Articl No 113506.Google Scholar
  21. 21.
    Messaoudi S. General decay of solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Anal 2008;69:2589–98.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Messaoudi S. General decay of solutions of a viscoelastic equation. J Math Anal App 2008;341:1457–67.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Messaoudi S. General stability in viscoelasticity, viscoelastic and viscoplastic materials, Mohamed El-Amin, IntechOpen 2016.  https://doi.org/10.5772/64217. Available from: https://www.intechopen.com/books/viscoelastic-and-viscoplastic-materials/general-stability-in-viscoelasticity.
  24. 24.
    Messaoudi S, Al-Khulaifi W. General and optimal decay for a quasilinear viscoelastic equation. Appl Math Lett 2017;66:16–22.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Messaoudi S, Mustafa M. On the control of solutions of viscoelastic equations with boundary feedback. Nonlin Anal: Real World Appl 2009;10:3132–40.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Muñoz Rivera J. Asymptotic behavior in linear viscoelasticity. Quart Appl Math 1994;52(4):628–48.CrossRefGoogle Scholar
  27. 27.
    Muñoz Rivera J, Oquendo Portillo H. Exponential stability to a contact problem of partially viscoelastic materials. J Elasticity 2001;63(2):87–111.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Muñoz Rivera J, Peres Salvatierra A. Asymptotic behavior of the energy in partially viscoelastic materials. Quart Appl Math 2001;59(3):557–78.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Mustafa M. Uniform decay rates for viscoelastic dissipative systems. J Dyn Control Syst 2016;22(1):101–16.MathSciNetCrossRefGoogle Scholar
  30. 30.
    Mustafa M. Well posedness and asymptotic behavior of a coupled system of nonlinear viscoelastic equations. Nonlin Anal: Real World Appl 2012;13:452–63.MathSciNetCrossRefGoogle Scholar
  31. 31.
    Mustafa M. On the control of the wave equation by memory-type boundary condition. Discrete Contin Dyn Syst Ser A 2015;35(3):1179–92.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Mustafa M. Optimal decay rates for the viscoelastic wave equation. Math Methods Appl Sci 2017;V41:192–204.MathSciNetzbMATHGoogle Scholar
  33. 33.
    Mustafa M, Messaoudi S. General stability result for viscoelastic wave equations. J Math Phys 2012;53:053702.MathSciNetCrossRefGoogle Scholar
  34. 34.
    Park J, Park S. General decay for quasilinear viscoelastic equations with nonlinear weak damping. J Math Phys. 2009;50(8):art No 083505.Google Scholar
  35. 35.
    Wu ST. General decay for a wave equation of Kirchhoff type with a boundary control of memory type. Boundary Value Prob. 2011.  https://doi.org/10.1186/1687-2770-2011-55.
  36. 36.
    Xiao T, Liang J. Coupled second order semilinear evolution equations indirectly damped via memory effects. J Differ Equ 2013;254(5):2128–57.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsMohammed Seddik Ben Yahia University-JijelJijelAlgeria
  2. 2.The Preparatory Year ProgramKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  3. 3.Department of Mathematics and StatisticsKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations