Advertisement

Integrable Weak Saddles for Trigonometric Liénard Systems

  • Claudia VallsEmail author
Article
  • 18 Downloads

Abstract

We give a complete algebraic characterization of the integrable weak saddles for planar trigonometric Liénard systems. The main tools used in our proof are the classification of the weak saddles on planar analytic Liénard systems and the characterization of some subfields of the quotient field of the ring of trigonometric polynomials.

Keywords

Weak saddle Trigonometric polynomials Liénard systems 

Mathematics Subject Classification (2010)

Primary 34A05 Secondary 34C05 37C10 

Notes

Funding Information

The study is partially supported by the Portuguese agency FCT through UID/MAT/04459/2013.

References

  1. 1.
    Cartan É, Cartan H. Note sur la génération des oscillations entretenues. Annales des P.T.T 1925;14:1196–1207.Google Scholar
  2. 2.
    Cherkas LA. Conditions for a Liénard equation to have a centre. Differential Equations 1976;12:201–206.zbMATHGoogle Scholar
  3. 3.
    Christopher C. An algebraic approach to the classification of centers in polynomial Liénard systems. J Math Anal Appl 1999;229:319–329.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cima A, Gasull A, Mañosas F. A simple solution of some composition conjectures for abel equations. J Math Anal Appl 2013;398:477–486.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gasull A, Giné J. Integrability of Liénard systems with a weak saddle. Z Angew Math Phys 2017;68:7.CrossRefGoogle Scholar
  6. 6.
    Gasull A, Giné J, Valls C. Center problem for trigonometric Liénard systems. J Differential Equations 2017;263:3928–3942.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Giné J, Grau M, Llibre J. Universal centres and composition conditions. Proc London Math Soc 2013;106:481–507.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Liapunov AM, Vol. 30. Stability of motion mathematics in science and engineering. New York-London: Academic Press; 1966.Google Scholar
  9. 9.
    Liénard A. Etude des oscillations entretenues. Revue géner de l’electr 1928;23: 901–906; 906–954.Google Scholar
  10. 10.
    Moussu R. Une démonstration d’un théoréme de Lyapunov-Poincaré. Astérisque 1982;98/99:216–223.MathSciNetzbMATHGoogle Scholar
  11. 11.
    Poincaré H. Mémoire sur les courbes définies par les équations differentielles. Journal de mathématiques 1881;37:375–422.zbMATHGoogle Scholar
  12. 12.
    Poincaré H, Vol. I. Oeuvres de Henri Poincaré. Paris: Gauthier-Villars; 1951, pp. 3–84.Google Scholar
  13. 13.
    Romanovski VG, Shafer DS. The center and cyclicity problems: a computational algebra approach. Boston: BirkhäUser; 2009.zbMATHGoogle Scholar
  14. 14.
    Van der Pol B. Sur les oscillations de relaxation. Phil Mag 1926;2:978–992.CrossRefGoogle Scholar
  15. 15.
    Van der Pol B. The non linear theory of electrical oscillations. Proc Inst Radio Eng 1934;22:1051–1086.zbMATHGoogle Scholar
  16. 16.
    van der Waerden BL, Vol. 1. Modern algebra, 2nd ed. New York: Frederick Ungar; 1966.Google Scholar
  17. 17.
    Ye YQ, Cai SL, Chen LS, Ke CH, Luo DJ, Ma ZE, Er NW, Wang MS, Yang XA. 1986. Theory of Limit Cycles, 2nd ed., Transl Math Monogr, 66, Amer Math Soc, Providence.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Matemática, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal

Personalised recommendations