Advertisement

New Family of Centers of Planar Polynomial Differential Systems of Arbitrary Even Degree

  • Jaume LlibreEmail author
  • Marzieh Mousavi
  • Arefeh Nabavi
Article
  • 22 Downloads

Abstract

The problem of distinguishing between a focus and a center is one of the classical problems in the qualitative theory of planar differential systems. In this paper, we provide a new family of centers of polynomial differential systems of arbitrary even degree. Moreover, we classify the global phase portraits in the Poincaré disc of the centers of this family having degree 2, 4, and 6.

Keywords

Poincaré compactification Center First integral Invariant algebraic curve 

Mathematics Subject Classification (2010)

Primary 34A05 Secondary 34C05 37C10 

Notes

Funding Information

This work is supported by the Ministerio de Economìa, Industria y competitividad, Agencia Estatal de Investigación grant MTM2016-77278-P (FEDER), the Agència de Gestió d’Ajusts Universitaris i de Recerca grant 2017SGR1617, and the European project Dynamics-H2020-MSCA-RISE-2017-777911.

References

  1. 1.
    Dulac H. Détermination et integration d’une certaine classe d’équations différentielle ayant par point singulier un centre. Bull Sci Math Sér 1908;32(2):230–52.zbMATHGoogle Scholar
  2. 2.
    Dumortier F, Llibre J, Artés JC. Qualitative theory of planar differential systems. New York: Springer; 2006.zbMATHGoogle Scholar
  3. 3.
    Fercec B, Giné J, Liu Y, Romanovski VG. Integrability conditions for Lotka-Volterra planar complex quartic systems having homogeneous nonlinearities. Acta Appl Math 2013;124:107–22.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fercec B, Giné J, Romanovski VG, Edneral V. Integrability of complex planar systems with homogeneous nonlinearities. J Math Anal Appl 2016;434:894–914.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Giacomini H, Gine J, Llibre J. The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems. J Diff Eqs 2006;227: 406–26.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Grau M, Llibre J. Divergence and poincaré Liapunov constants for analytic differential systems. J Diff Eqs 2015;258:4348–67.CrossRefzbMATHGoogle Scholar
  7. 7.
    Llibre J, Zoladek H. The poincare center problem. J Dyn Control Syst 2008; 14:505–35.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Markus L. Global structure of ordinary differential equations in the plane. Trans Amer Math Soc 1954;76:127–48.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Mazzi L, Sabatini M. A characterization of centres via first integrals. J Diff Eqs 1988;76:222–37.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Neumann DA. Classification of continuous flows on 2–manifolds. Proc Amer Math Soc 1975;48:73–81.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Peixoto MM. On the classification of flows on 2–manifolds. New York: Academic; 1973, pp. 389–419. Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971).Google Scholar
  12. 12.
    Perko L. Differential equations and dynamical systems, 3rd edn. New York: Springer; 2001.CrossRefzbMATHGoogle Scholar
  13. 13.
    Poincaré H. Mémoire sur les courbes définies par les équations différentielles. Journal de Mathématiques 1881;37:375-422. Oeuvres de Henri Poincaré, vol. I, Gauthier-Villars, Paris, 1951, pp. 3-84.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departament de MatemàtiquesUniversitat Autònoma de BarcelonaBarcelonaSpain
  2. 2.Department of Mathematical SciencesIsfahan University of TechnologyIsfahanIran

Personalised recommendations