Control Problem for a Magneto-Micropolar Flow with Mixed Boundary Conditions for the Velocity Field

  • Exequiel Mallea-ZepedaEmail author
  • Elva Ortega-Torres


We prove the existence and uniqueness of weak solutions of the stationary magneto-micropolar equations with mixed boundary conditions for velocity, including Navier slip condition. We study an optimal boundary control problem associated to weak solutions of these equations. By using the Lagrange multipliers method, we obtain first-order necessary conditions from which we derive an optimality system.


Magneto-micropolar fluids Boundary control problem Optimality system 

Mathematics Subject Classification (2010)

35Q35 76D03 76D55 



E. Mallea-Zepeda was supported by Proyecto UTA-Mayor, 4740-18, Universidad de Tarapacá (Chile).


  1. 1.
    Ahmadi G, Shahinpoor M. Universal stability of magneto-micropolar fluid motion. Int J Engng Sci 1974;12:657–63.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ahmadi G. Universal stability of thermo-magneto-micropolar fluid motion. Int J Engng Sci 1976;15:853–9.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alekseev GV. Solvability of control problems for stationary equations of magnetohydrodynamics of a viscous fluids. Siberian Math J 2004;45(2):197–213.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Alekseev GV, Brizitskii RV. Control problems for stationary equations of the magnetohydrodynamics of a viscous heat-conducting fluids with mixed boundary conditions. Comput Math Math Phys 2005;45(12):2049–65.MathSciNetGoogle Scholar
  5. 5.
    Alekseev GV. Solvability of an inhomogeneous boundary value problem for the stationary magnetohydrodynamic equations for a viscous incompressible fluid. Diff Equ 2016;52(6):739–48.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Alekseev GV, Brizitskii RV. Solvability of the boundary value problem for stationary magnetohydrodynamic equations under mixed boundary conditions for the magnetic field. Appl Math Lett 2014;32:13–18.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Boldrini JL, Rojas-Medar MA. Magneto-micropolar fluid motion: existence of weak solution. Rev Mat Univ Complutense de Madrid 1998;11:443–60.MathSciNetzbMATHGoogle Scholar
  8. 8.
    Brézis H. Functional analysis. Sobolev spaces and partial differential equations. New York: Springer; 2011.zbMATHGoogle Scholar
  9. 9.
    Dautray R, Lions JL. 2000. Mathematical analysis and numerical methods for science and technology 2. Springer.Google Scholar
  10. 10.
    De los Reyes JC, Kunisch K. A semi-smooth Newton method for control constrained boundary optimal control of the Navier–Stokes equations. Nonlinear Anal 2005;62:1289–316.MathSciNetCrossRefGoogle Scholar
  11. 11.
    De los Reyes JC, Tröltzsch F. Optimal control of the stationary Navier-Stokes equations with mixed control-state constraints. SIAM J Control Optim 2007;46:604–29.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Galdi G. 2011. An introduction to the mathematical theory of the Navier-Stokes equations, 2nd edn. Springer.Google Scholar
  13. 13.
    Galdi G, Rionero S. A note on the existence and uniqueness of solutions of the micropolar fluid equations. Int J Enging Sci 1977;15:105–8.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gunzburger M, Hou L, Svobodny T. Boundary velocity control of incompressible flow with an application to viscous drag reduction. SIAM J Control Optim 1992;30:167–81.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gunzburger M, Hou L, Svobodny T. Analysis and finite element approximations of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls. Math Model Numer Anal 1991;25:711–48.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gunzburger M, Hou L, Svobodny T. The velocity tracking problem for Navier-Stokes flows with boundary control. SIAM J Control Optim 2000;39:594–634.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gunzburger M, Meir AJ, Peterson JS. On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics. Math Comp 1991;56:523–63.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hou LS, Meir AJ. Boundary optimal control of MHD flows. Apl Math Optim 1995;32:143–162.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Jägger W, Mikelić A. On the roughness-induced effective boundary conditions for an incompressible viscous flow. J Diff Equ 2001;170:96–122.MathSciNetCrossRefGoogle Scholar
  20. 20.
    John C, Wachsmuth D. Optimal Dirichlet boundary control of stationary Navier-Stokes equations with state constraint. Num Funct Anal Optim 2009;30:1309–1338.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lukaszewicz G. Micropolar fluids: theory and applications. Boston: Birkhäuser; 1999.CrossRefGoogle Scholar
  22. 22.
    Lukaszewicz G. On stationary flows of asymmetric fluids. Volume XII. Rend Accad Naz Sci Detta dei XL 1988;106:35–44.zbMATHGoogle Scholar
  23. 23.
    Mallea-Zepeda E, Ortega-Torres E, Villamizar-Roa E. A Boundary control problem for micropolar fluids. J Optim Theory Appl 2016;169(2):349–369.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mallea-Zepeda E, Ortega-Torres E, Villamizar-Roa E. 2017. An optimal control problem for the steady nonhomogeneous asymmetric fluids. Appl Math. Optim (In press).
  25. 25.
    Maxwell JC. On stressed in rariffed gases arising from inequalities of temperature. Phil Trans Royal Soc. 1879; 704–12.Google Scholar
  26. 26.
    Navier CL. Sur le lois de l’équilibrie et du mouvement des corps élastiques. Mem Acad R Sci Inst. France (1827):369.Google Scholar
  27. 27.
    Ortega-Torres E, Rojas-Medar MA. Magneto-micropolar fluid motion: global existence of strong solutions. Abstr Appl Anal 1999;4(2):109–25.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Rojas-Medar MA. Magneto-micropolar fluid motion: existence and uniqueness of strong solutions. Math Nuchr 1997;188:301–19.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Solonnikov VA, Scadilov VE. A certain boundary value problem for the stationary system of Navier—Stokes equations. Trudy Mat Inst Steklov 1973;125:196–210.MathSciNetzbMATHGoogle Scholar
  30. 30.
    Stavre R. A distributed control problem for micropolar fluids. In honour of Academician Nicolae Dan Cristescu on his 70th birthday. Rev Roumaine Math Pures Appl 2001;45(2):353–58.MathSciNetGoogle Scholar
  31. 31.
    Stavre R. The control of the pressure for a micropolar fluid. Dedicated to Eugen Soós. Z Angew Math Phys 2002;53(6):912–22.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Stavre R. Optimization and numerical approximation for micropolar fluids. Numer Funct Anal Optim 2003;24(3-4):223–241.MathSciNetCrossRefGoogle Scholar
  33. 33.
    Temam R. 2001. Navier-stokes equations: theory and numerical analysis. AMS Chelsea Publishing.Google Scholar
  34. 34.
    Zowe J, Kurcyusz S. Regularity and Stability for the Mathematical Programming Problem in Banach Spaces. Appl Math Optim 1979;5:49–62.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidad de TarapacáAricaChile
  2. 2.Departamento de MatemáticasUniversidad Católica del NorteAntofagastaChile

Personalised recommendations