Advertisement

Periodic Solutions of a Class of Non-autonomous Discontinuous Second-Order Differential Equations

  • Clayton E. L. da SilvaEmail author
  • Alain Jacquemard
  • Marco A. Teixeira
Article
  • 63 Downloads

Abstract

We consider the second-order discontinuous differential equation y + η sgn(y) = 𝜃y + α sin(βt) where the parameters η, 𝜃, α, and β are real. The main goal is to discuss the existence of periodic solutions. Under explicit conditions, the number of such solutions is given. Furthermore, for each of these periodic solutions, an explicit formula is provided.

Keywords

Non-smooth differential equations Second order Periodic solutions Non-autonomous Filippov systems 

Mathematics Subject Classification (2010)

34C15 34K12 34H05 

Notes

References

  1. 1.
    Andronov AA, Vitt AA, Khaikin SE. Theory of Oscillators. New York: Dover; 1996.zbMATHGoogle Scholar
  2. 2.
    Cid JA, Sanchez L. Periodic solutions for second order differential equations with discontinuous restoring forces. J Math Anal Appl 2003;288:349–364.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Jacquemard A, Teixeira MA. On singularities of discontinuous vector fields. Bull Sci Math 2003;127:611–633.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Jacquemard A, Tonon DJ. Coupled systems of non-smooth differential equations. Bull Sci Math 2012;136(3):239–255.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Kunze M, Küpper T., You J. On the application of KAM theory to discontinuous dynamical systems. J. Differential Equations 1997;139:1–21.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Jacquemard A, Teixeira MA. Periodic solutions of a class of non-autonomous second order differential equations with discontinuous right-hand side. Phys D 2012;241: 2003–2009.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chen H, Duan J. 2018. Bounded and unbounded solutions of a discontinuous oscillator at resonance. International Journal of Non-Linear Mechanics.  https://doi.org/10.1016/j.ijnonlinmec.2018.06.003.
  8. 8.
    Lazer AC, Leach DE. Bounded pertubations of forced harmonic oscillators at resonance. Ann Mat Pura Appl 1969;41:49–68.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Matemática, Instituto de Ciências Exatas e NaturaisUniversidade Federal de Mato Grosso (UFMT)RondonópolisBrazil
  2. 2.Sorbonne Universités, UPMC Univ Paris 06, and CNRS, UMR 7606ParisFrance
  3. 3.Inria, Paris Center, PolSys ProjectParisFrance
  4. 4.Institut de Mathématiques de Bourgogne, UMR CNRS 5584Université de Bourgogne Franche-ComtéFrance
  5. 5.Departamento de Matemática, Instituto de Matemática, Estatística e Computação CientíficaUniversidade de Campinas (UNICAMP)CampinasBrazil

Personalised recommendations