Advertisement

Journal of Dynamical and Control Systems

, Volume 24, Issue 3, pp 475–495 | Cite as

Hessian Measures in the Aerodynamic Newton Problem

  • L. V. Lokutsievskiy
  • M. I. Zelikin
Article
  • 89 Downloads

Abstract

Simple natural proofs of all known results regarding the aerodynamic Newton problem are obtained. Additional new theorems and new promising formulas in terms of Hessian measures are found.

Keywords

Aerodynamic Newton problem Hessian measures Legendre transform bi-continuity of the Legendre transform 

Mathematics Subject Classification (2010)

49K30 49J30 

Notes

Acknowledgements

We would like to express deep gratitude to Gerd Wachsmuth for his very important comment concerning Theorem 6.

Funding Information

This work is supported by the Program of the Presidium of the Russian Academy of Sciences N o 01 ‘Fundamental Mathematics and its Applications’ under grant PRAS-18-01 and by the Russian Foundation for Basic Research under grants 17-01-00805 and 17-01-00809.

References

  1. 1.
    Aleksenko A, Plakhov A. Bodies of zero resistance and bodies invisible in one direction. Nonlinearity 2009;22(6):1247–1258.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Brock F, Ferone V, Kawohl B. A symmetry problem in the calculus of variations. Calc Var 1996;4(6):593–599.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Buttazzo G, Ferone V, Kawohl B. Minimum problems over sets of concave functions and related questions. Mathematische Nachrichten 1995;173(1):71–89.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Colesanti A. A Steiner type formula for convex functions. Mathematika 1997;44 (1):195–214.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Colesanti A, Hug D. Hessian measures of semi-convex functions and applications to support measures of convex bodies. Manuscripta Mathematica 2000;101:209–238.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Guasoni P. Problemi di ottimizzazione di forma su classi di insiemi convessi. Test di Laurea, Universita di Pisa, 1995-1996.Google Scholar
  7. 7.
    Joly J-L. Une famille de topologies sur l’ensemble des fonctions convexes pour lesquelles la polarité est bicontinue. J Math Pures Appl 1973;52(9):421–441.MathSciNetzbMATHGoogle Scholar
  8. 8.
    Lachand-Robert T, Peletier M. An example of non-convex minimization and an application to Newton’s problem of the body of least resistance. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 2001;18(2):179–198.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lachand-Robert T, Peletier M. Newton’s problem of the body of minimal resistance in the class of convex developable functions. Mathematische Nachrichten 2001; 226(1):153–176.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Marcellini P. 1990. Non convex integrals of the calculus of variations: Springer, Berlin.Google Scholar
  11. 11.
    Mosco U. On the continuity of the Young-Fenchel transform. J Math Anal Appl 1971;35(3):518–535.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rockafellar R T. Convex analysis. Princeton: Princeton University Press; 1997.zbMATHGoogle Scholar
  13. 13.
    Salinetti G, Wets R J. On the relations between two types of convergence for convex functions. J Math Anal Appl 1977;60(1):211–226.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Schneider R. Convex bodies: the Brunn-Minkowski theory. Cambridge: Cambridge University Press; 2014. Second expanded edition.zbMATHGoogle Scholar
  15. 15.
    Wachsmuth G. The numerical solution of Newton’s problem of least resistance. Math Program 2014;147(1):331–350.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Steklov Mathematical Institue of RASMoscowRussia
  2. 2.Faculty of Mechanics and MathematicsLomonosov Moscow State University (MSU)MoscowRussia

Personalised recommendations