Journal of Dynamical and Control Systems

, Volume 23, Issue 3, pp 597–622 | Cite as

Tangential Center Problem for a Family of Non-generic Hamiltonians

  • Jessie Pontigo-HerreraEmail author


The tangential center problem was solved by Yu. S. Ilyashenko in the generic case Mat Sbornik (New Series), 78, 120, 3,360–373, (1969). With the aim of having well-understood models of non-generic Hamiltonians, we consider here a family of non-generic Hamiltonians, whose Hamiltonian is of the form \(F=\prod f_{j}\), where f j are real polynomials of degree ≥ 1. For this family, the genericity assumption of transversality at infinity fails and the coincidence of the critical values for different critical points is allowed. We consider some geometric conditions on these polynomials in order to compute the orbit under monodromy of their vanishing cycles. Under those conditions, we provide a solution of the tangential center problem for this family.


Abelian integrals Tangential center problem Monodromy 

Mathematics Subject Classification (2010)

34M35 34C08 14D05 



I am grateful to Laura Ortiz, Pavao Mardesic and Dmitry Novikov for numerous helpful discussions and suggestions. I am also grateful to the referee for useful and accurate remarks.


  1. 1.
    A’Campo N. Le groupe de monodromie du déploiement des singularités isolées de courbes planes I. Math Ann 1975;213:1–32.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arnold VI, Gusein-Zade SM, Varchenko AN, Vol. II. Singularities of Differentiable Maps. Boston. Basel. Berlin: Birkhäuser; 1988.CrossRefzbMATHGoogle Scholar
  3. 3.
    Bonnet P, Dimca A, Relative differential forms and complex polynomials. Bull Sci Math 2000;124(7):557–571.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Caubergh M., Dumortier F., Roussarie R. Alien limit cycles near a Hamiltonian 2-saddle cycle. C R Acad Sci Paris, Ser I 2005;340:587–592.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Christopher C, Mardesic P. Monodromy and tangential center problems. Functional Analysis and Its Applications 2010;44(1):22–35.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Christopher C., Mardesic P. Darboux relative exactness and pseudo-Abelian integrals. To be published.Google Scholar
  7. 7.
    Gavrilov L. On the topology of polynomials in two complex variables. Laboratoire de Topologie et Géométrie, U.R.A C.N.R.S 1408 Toulouse.Google Scholar
  8. 8.
    Gavrilov L. Petrov modules and zeros of Abelian integrals. Bull Sci Math 1998; 122(8):571–584. MR 99m:32043.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Grothendieck A. On the de Rham cohomology of algebraic varieties. Publication Mathmatiques de lI.H.É.S., tome 1966;29:95–103.zbMATHGoogle Scholar
  10. 10.
    Ilyashenko YS. Appearance of limit cycles by perturbation of the equation \(\frac {dw}{dz}=-\frac {R_{z}}{R_{w}}\), where R(z, w) is a polynomial. Mat. Sbornik (New Series) 1969;78(120):3,360–373.Google Scholar
  11. 11.
    Ilyashenko YS, Yakovenko S. Lecture on Analytic Diffrential Equations. Graduate Studies in Mathematics, Providence, RI, 2008, xiv+625p, ISBN 978-0-8218-3667-5.Google Scholar
  12. 12.
    Murasugi K. 1996. Knot theory and its applications Birkhäuser.Google Scholar
  13. 13.
    Pelletier M, Uribe M. Principal Poincaré Pontryagin function associated to some families of Morse real polynomials. Nonlinearity 27(2):257.Google Scholar
  14. 14.
    Uribe M. Principal Poincaré-Pontryagin function associated to polynomial perturbations of a product of (d+1) straight lines. J Differ Equ 2009;246(4):1313–1341.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Instituto de MatemáticasUniversidad Nacional Autónoma de México (UNAM)Distrito FederalMéxico
  2. 2.Institut de Mathématiques de Bourgogne, U.M.R. 5584 du C.N.R.S.Université de BourgogneDijon CedexFrance

Personalised recommendations