Journal of Dynamical and Control Systems

, Volume 23, Issue 2, pp 283–299 | Cite as

Stability of an Axially Moving Viscoelastic Beam

  • Abdelkarim Kelleche
  • Nasser-eddine Tatar
  • Ammar Khemmoudj


In this paper, we consider a viscoelastic flexible structure modeled as an Euler-Bernoulli beam. The beam is moving in the direction of its axis. This is one of the main features of this work. We will be dealing with variable intervals of integration and therefore the standard computation using differentiation under the integral sign is no longer valid. The boundary conditions are of ‘cantilever’ type: there is no displacement at one end and the other end is free. In fact, it is subject to a nonlinear force acting there. We prove that when the velocity of the beam is smaller than a critical value, the dissipation produced by the viscoelastic material is sufficient to suppress the transversal vibrations that occur during the axial motion of the beam. The rate of decay is shown to be exponential.


Flexible beam Axial motion Viscoelastic damping Nonlinear force Exponential decay 

Mathematics Subject Classification (2010)

35L20 35B40 45K05 


  1. 1.
    Bapat VA, Srinivasan P. Nonlinear transverse oscillations in traveling strings by the method of harmonic balance. J Appl Mech 1967;34:775–777.CrossRefGoogle Scholar
  2. 2.
    Barreto R, Lapa EC, Munoz Rivera JE. Decay rates for viscoelastic plates with memory. J Elasticity 1996;44(1):61–87.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Carrier GF. On the nonlinear vibration problem of the elastic string. Quart Appl Math 1965;3:157–165.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cavalcanti MM, Domingos Cavalcanti VN, Martinez P. General decay rate estimates for viscoelastic dissipative systems. Nonlinear Anal TMA 2008;68(1):177–193.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Choi JY, Hong KS, Yang KJ. Exponential stabilization of an axially moving tensioned strip by passive damping and boundary control. J Vib Acoust 2004;10 (5):661–682.MathSciNetMATHGoogle Scholar
  6. 6.
    Coleman BD, Noll W. Foundations of linear viscoelasticity. Rev Modern Phys 1961;33:239–249.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Coleman BD, Mizel VJ. On the general theory of fading memory. Arch Ration Mech Anal 1968;29:18–31.MathSciNetMATHGoogle Scholar
  8. 8.
    Coron JM, d’Andrea-Novel B. Stabilization of a rotating rody beam without damping. IEEE Trans Auto Control 1998;43(5):608–619.CrossRefMATHGoogle Scholar
  9. 9.
    Dafermos CM. Asymptotic stability in viscoelasticity. Arch Ration Mech Anal 1970;37:297–308.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dafermos CM. On abstract Volterra equations with applications to linear viscoelasticity. J Differ Equ 1970;7:554–569.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Fabrizio M, Morro A. Mathematical problems in linear viscoelasticity. SIAM Stud Appl Math Philadelphia 1992.Google Scholar
  12. 12.
    Guo BZ, Chan KY. Riesz basis generation eigenvalues distribution and exponential stability for an Euler-Bernoulli beam with joint feedback control, revista. Mat Complut 2001;14(1):295–229.Google Scholar
  13. 13.
    Guo BZ, Guo W. Stabilization and parameter estimation for an Euler–Bernoulli beam equation with uncertain harmonic disturbance under boundary output feedback control. Nonlinear Anal 2005;61:671–693.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Guo F, Huang F. Boundary feedback stabilization of the undamped Euler-Bernoulli beam with both ends free. SIAM J Control Optim 2204;43(1):341–356.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Guo BZ, Song Q. Tracking control of a flexible beam by nonlinear boundary feedback. J Appl Math Stochastic Anal 1995;8(1):47–58.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hardy GH, Littlewood JE, Polya G. Inequalities. Cambridge: Cambridge University Press; 1959.MATHGoogle Scholar
  17. 17.
    Labidi S, Tatar N-E. Blow-up for the Euler-Bernoulli beam problem with a fractional boundary dissipation. Dyn Syst Appl 2008;17:109–120.MathSciNetMATHGoogle Scholar
  18. 18.
    Lee SY, Mote CD. Wave characteristics vibration control of translating beams by optimal boundary damping. J Vib Acoust 1999;121(1):18–25.CrossRefGoogle Scholar
  19. 19.
    Li Y, Rahn CD. Adaptive vibration isolation for axially moving beams. IEEE/ASME Trans Mechatron 2000;5(4):419–428.CrossRefGoogle Scholar
  20. 20.
    Lima Santos MD, Junior F. A boundary condition with memory for Kirchhoff plates equations. Appl Math Comput 2004;148:475–496.MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Lions J-L. 1969. Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod.Google Scholar
  22. 22.
    Messaoudi S. General decay of solutions of a viscoelastic equation. J Math Anal Appl 2008;341(2):1457–1467.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Messaoudi S, Tatar N-E. Exponential decay for a quasilinear viscoelastic equation. Math Nachr 2009;282(10):1443–1450.MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Murdoch AI. Remarks on the foundations of linear viscoelasticity. J Mech Phys Solids 1992;40(7):1559–1568.MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Park JY, Kim JA. Global existence stability for Euler-Bernoulli beam equation with memory condition at the boundary. J Korean Math Soc 2005;42(6):1137–1152.MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Pata V. Exponential stability in linear viscoelasticity. Quart Appl Math 2006;64 (3):499–513.MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Shahruz SM. Boundary control of the axially moving Kirchhoff string. Automatica 1998;34(10):1273–1277.CrossRefMATHGoogle Scholar
  28. 28.
    Shahruz SM. Boundary control of a nonlinear axially moving string. Inter J Robust Nonlinear Control 2000;10(1):17–25.MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Tabarrok B, Leech CM, Kim YI. On the dynamics of an axially moving beam. J Franklin Inst 1974;297(3):201–220.CrossRefMATHGoogle Scholar
  30. 30.
    Tatar N-E. On a problem arising in isothermal viscoelasticity. Int J Pure Appl Math 2003;3(1):1–12.MathSciNetMATHGoogle Scholar
  31. 31.
    Tatar N-E. Polynomial stability without polynomial decay of the relaxation function. Math Meth Appl Sci 2008;31(15):1874–1886.MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Tatar N-E. How far can relaxation functions be increasing in viscoelastic problems. Appl Math Lett 2009;22(3):336–340.MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Tatar N-E. Exponential decay for a viscoelastic problem with singular kernel. Zeit Angew Math Phys 2009;60(4):640–650.MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Tatar N-E. On a large class of kernels yielding exponential stability in viscoelasticity. Appl Math Comp 2009;215(6):2298–2306.MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Tatar N-E. Arbitrary decays in viscoelasticity. J Math Phys 2011;52(1):013502.MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Tatar N-E. A new class of kernels leadingto an arbitrary decay in viscoelasticity. Meditter J Math 2013;10:213–226.CrossRefMATHGoogle Scholar
  37. 37.
    Wickert JA, Mote CD. Classical vibration analysis of axially moving continua. J Appl Mech 1990;57(3):738–744.CrossRefMATHGoogle Scholar
  38. 38.
    Zhang HH, Matsuo H, Morita H, Yamakawa H. Stability and stabilization of a deployable flexible structure. In: 37th IEEE conference on decision and control; 1998. p. 4541–4542.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Abdelkarim Kelleche
    • 1
  • Nasser-eddine Tatar
    • 2
  • Ammar Khemmoudj
    • 1
  1. 1.Faculté des MathématiquesUniversité des Sciences et de la Technologie Houari BoumedieneBab EzzouarAlgeria
  2. 2.Department of Mathematics and StatisticsKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations