Journal of Dynamical and Control Systems

, Volume 22, Issue 4, pp 713–724 | Cite as

The Phenomenon of Reversal in the Euler–Poincaré–Suslov Nonholonomic Systems

Article

Abstract

The development of robotics makes it necessary to study the problem of controlling nonholonomic systems (Svinin et al., Regul Chaotic Dyn. 2013; 18(1–2): 126–143, Borisov et al., Regul. Chaotic Dyn. 2013; 18(1–2): 144–158, Ivanova et al., Regul Chaotic Dyn. 2014; 19(1): 140–143). In this paper, the dynamics of nonholonomic systems on Lie groups with a left-invariant kinetic energy and left-invariant constraints are considered. Equations of motion form a closed system of differential equations on the corresponding Lie algebra. In addition, the effect of change in the stability of steady motions of these systems with the direction of motion reversed (the reversal found in rattleback dynamics) is discussed. As an illustration, the rotation of a rigid body with a fixed point and the Suslov nonholonomic constraint as well as the motion of the Chaplygin sleigh is considered.

Keywords

Lie group Left-invariant constraints Euler–Poincaré–Suslov systems Chaplygin sleigh Anisotropic friction Conformally Hamiltonian systems Stability 

Mathematics Subject Classification (2010)

34D20 70E40 37J35 

References

  1. 1.
    Svinin M, Morinaga A, Yamamoto M. On the dynamic model and motion planning for a spherical rolling robot actuated by orthogonal internal rotors. Regul Chaotic Dyn. 2013;18(1–2):126–143.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Borisov AV, Kilin AA, Mamaev IS. How to control the chaplygin ball using rotors. II. Regul Chaotic Dyn. 2013;18(1–2):144–158.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ivanova TB, Pivovarova EN. Comments on the Paper by A. V. Borisov, A. A. Kilin, I. S. Mamaev “How to Control the Chaplygin Ball Using Rotors. II”. Regul Chaotic Dyn. 2014;19(1):140–143.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Arnold VI. Sur la géométrie différentielle des groups de Lie de dimension infinite et ses applications à l’hydrodynamique des fluides parfaits. Ann Inst Fourier 1966;16(1): 319–361.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bolsinov AV, Borisov AV, Mamaev IS. Hamiltonization of nonholonomic systems in the neighborhood of invariant manifolds. Regul Chaotic Dyn 2011;16(5):443–464.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Borisov AV, Fedorov YN, Mamaev IS. Chaplygin ball over a fixed sphere: an explicit integration. Regul Chaotic Dyn 2008;13(6):557–571.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Borisov AV, Jalnine AY, Kuznetsov SP, Sataev IR, Sedova JV. Dynamical phenomena occurring due to phase volume compression in nonholonomic model of the rattleback. Regul Chaotic Dyn 2012;17(6):512–532.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Borisov AV, Mamaev IS. The rolling motion of a rigid body on a plane and a sphere: hierarchy of dynamics. Regul Chaotic Dyn 2002;7(2):177–200.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Borisov AV, Mamaev IS. Rolling of a non-homogeneous ball over a sphere without slipping and twisting. Regul Chaotic Dyn 2007;12(2):153–159.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Borisov AV, Mamaev IS. Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems. Regul Chaotic Dyn 2008;13(5):443–490.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Caratheodory C, Der Schlitten Z. Angew. Math Mech 1933;13:71–76.Google Scholar
  12. 12.
    Fedorov YN, Maciejewski AJ, Przybylska M. Suslov problem: integrability, meromorphic and hypergeometric solutions. Nonlinearity 2009;22(9):2231–2259.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Jovanović B. Some multidimensional integrable cases of nonholonomic rigid body dynamics. Regul Chaotic Dyn 2003;8(1):125–132.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kozlov VV, Fedorov YN. Various aspects of n-Dimensional rigid body dynamics, in dynamical systems in classical mechanics. Amer Math Soc Transl Ser 2 1995;168:141–171. Providence, R.I.: AMS.Google Scholar
  15. 15.
    Poincaré H, Sur une forme nouvelle des équations de la Mécanique. C R Acad Sci 1901;132:369–371.Google Scholar
  16. 16.
    Walker GT. On a dynamical top. Quart J Pure Appl Math 1896;28:174–185.Google Scholar
  17. 17.
    Zenkov DV, Bloch AM. Dynamics of the n-dimensional Suslov problem. J Geom Phys 2000;34(2):121–136.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Borisov AV, Kilin AA, Mamaev IS. Hamiltonian representation and integrability of the suslov problem. Nelin Dinam 2010;6(1):127–142. (Russian).Google Scholar
  19. 19.
    Borisov AV, Mamaev IS. Strange attractors in rattleback dynamics. Phys Uspekhi 2003;46(4):393–403. see also: Uspekhi Fiz. Nauk, 2003, 173, 4, 407–418.Google Scholar
  20. 20.
    Borisov AV, Mamaev IS. The dynamics of a chaplygin sleigh. J Appl Math Mech 2009;73(2):156–161. see also: Prikl. Mat. Mekh., 2009, 73, 2, 219–225.Google Scholar
  21. 21.
    Kozlov VV. Realization of nonintegrable constraints in classical mechanics. Sov Phys Dokl 1983;28:735–737. see also: Dokl. Akad. Nauk SSSR, 1983, 272, 3, 550–554.Google Scholar
  22. 22.
    Kozlov VV. On the theory of integration of the equations of nonholonomic mechanics. Uspekhi Mekh 1985;8(3):85–107. (Russian).Google Scholar
  23. 23.
    Kozlov VV. Invariant measures of Euler–Poincaré equations on lie algebras. Funct Anal Appl 1988;22(1):58–59. see also: Funktsional. Anal. i Prilozhen., 1988, 22, 1, 69–70.Google Scholar
  24. 24.
    Kozlov VV. The Euler–Jacobi–Lie integrability theorem. Regul Chaotic Dyn 2013; 18(4):329–343.MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Lyapunov AM. 1950. The general problem of the stability of motion, Moscow: Gostekhizdat. (Russian).Google Scholar
  26. 26.
    Markeev AP. 2014. Dynamics of a Body Touching a Rigid Surface, Moscow–Izhevsk: R&C Dynamics, Institute of Computer Science. (Russian).Google Scholar
  27. 27.
    Neimark JI, Fufaev NA. Dynamics of nonholonomic systems 1972;33. Providence, RI: AMS.Google Scholar
  28. 28.
    Suslov GK, Theoretical Mechanics Moscow: Gostekhizdat. 1946. Russian).Google Scholar
  29. 29.
    Chaplygin SA. On the theory of motion of nonholonomic systems. The reducing-multiplier theorem. Regul Chaotic Dyn 2008;13(4):369–376. see also: Mat. Sb., 1912, 28, 2, 303–314.Google Scholar
  30. 30.
    Fedorov YN, Maciejewski AJ, Przybylska M. The poisson equations in the nonholonomic suslov problem: integrability, meromorphic and hypergeometric solutions. Nonlinearity 2009;22:2231–2259.MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Borisov AV, Kazakov AO, Sataev IR. The reversal and chaotic attractor in the nonholonomic model of Chaplygins top. Regul Chaotic Dyn 2014;19(6):718–733.MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Gonchenko AS, Gonchenko SV, Kazakov AO. Richness of chaotic dynamics in nonholonomic models of a Celtic stone. Regul Chaotic Dyn 2013;18(5):521–538.MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Borisov AV, Mamaev IS, Bizyaev IA. The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere. Regul Chaotic Dyn 2013;18(3):277–328.MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Borisov AV, Mamaev IS, Bizyaev IA. The Jacobi integral in nonholonomic mechanics. Regul Chaotic Dyn 2015;20(3):383–400.MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Bizyaev IA, Borisov AV, Mamaev IS. The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside. Regul Chaotic Dyn 2014;19(2):198–213.MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Kazakov AO. Strange attractors and mixed dynamics in the problem of an unbalanced rubber ball rolling on a plane. Regul Chaotic Dyn. 2013;18(5):508–520.MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Kozlov VV. Remarks on integrable systems. Regul Chaotic Dyn. 2014;19(2):145–161.MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Borisov AV, Kilin AA, Mamaev IS. The problem of drift and recurrence for the rolling chaplygin ball. Regul Chaotic Dyn. 2013;18(6):832–859.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations