Advertisement

Journal of Dynamical and Control Systems

, Volume 22, Issue 1, pp 15–34 | Cite as

Horizontal Gradient of Polynomial Functions for the Standard Engel Structure on ℝ4

  • Si Tiep Dinh
  • Krzysztof KurdykaEmail author
Article
  • 154 Downloads

Abstract

We investigate the set V f of horizontal critical points of a polynomial function f for the standard Engel structure defined by the 1-forms ω 3 = d x 3x 1 d x 2 and ω 4 = d x 4x 3 d x 2, endowed with the sub-Riemannian metric \(g_{\text {SR}}=d{x_{1}^{2}}+d{x^{2}_{2}}\). For a generic polynomial, we show that the set Γ f of points in V f , where V f is not transverse to the Engel distribution, does not have a connected component which is contained in a fiber of f. Then, we prove that each trajectory of the horizontal gradient of f approaching the set V f has a limit.

Mathematics Subject Classifications (2010)

14P10 53C17 58A30 58Kxx 

Notes

Acknowledgments

This work was supported by the Fields Institute, ANR grant STAAVF (France), LIA Formath Vietnam Project, VAST and Vietnam National Foundation for Science and Technology Development (NAFOSTED) grant 101.04-2014.23.

References

  1. 1.
    Ardentov AA, Sachkov YL. Conjugate points in nilpotent sub-Riemannian problem on the Engel group. J Math Sci 2013;195(3):369–390.CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Balogh ZM, Holopainen I, Tyson JT. Singular solutions, homogeneous norms, and quasiconformal mappings in Carnot groups. Math. Ann. 2002;324:159–186.CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Bellaïche A. The tangent space in sub-Riemannian geometry. Progress in Mathematics Vol.144: Birkhäuser Verlag; 1996.Google Scholar
  4. 4.
    Benedetti R, Risler J-J. Real algebraic and semi-algebraic sets: Hermann; 1991.Google Scholar
  5. 5.
    Bochnak J, Coste M, Roy M-F. Géométrie algébrique réelle: Springer; 1987.Google Scholar
  6. 6.
    Chow WL. Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung. Math Ann 1939;117:98–105.MathSciNetGoogle Scholar
  7. 7.
    Coste M. An Introduction to semialgebraic geometry, Dip. Mat. Univ. Pisa, Dottorato di Ricerca in Matematica, Istituti Editoriali e Poligrafici Internazionali, Pisa. 2000. http://perso.univ-rennes1.fr/michel.coste/articles.html.
  8. 8.
    Dinh ST, Kurdyka K, Orro P. Gradient horizontal de fonctions polynomiales. Annales de l’Institut Fourier 2009;59(5):1999–2042.CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Engel F. Zur Invariantentheorie der Systeme Pfaff’scher Gleichungen. Leipz Ber Band 1889;41:157–176.Google Scholar
  10. 10.
    Gershkovich V. Exotic Engel structures on ℝ4. Russian J Math Phys 1995;3(2):207–226.MathSciNetzbMATHGoogle Scholar
  11. 11.
    Goresky M, MacPherson R. Stratified Morse theory: Springer; 1988.Google Scholar
  12. 12.
    Gromov M. 1994. Carnot-Caratheodory spaces seen from within, IHES.Google Scholar
  13. 13.
    Guillemin V, Pollack A. Differential topology: Prentice-Hall; 1974.Google Scholar
  14. 14.
    Hardt RM. Semi-algebraic local-triviality in semi-algebraic mappings. Amer J Math 1980;102(2):291–302.CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Hirsch M. Differential topology: Springer; 1976.Google Scholar
  16. 16.
    Jean F. Entropy and complexity of a path in sub-Riemannian geometry, ENSTA; 1999.Google Scholar
  17. 17.
    Kurdyka K, Orro P, Simon S. Semialgebraic sard theorem for generalized critical values. J Diff Geom 2000;56(1):67–92.Google Scholar
  18. 18.
    S. Łojasiewicz. Ensembles semi-analytiques, I.H.E.S, Bures-sur-Yvette; 1965.Google Scholar
  19. 19.
    Łojasiewicz S. Sur la géométrie semi- et sous- analytique. Annales de l’institut Fourier 1993;43(5):1575–1595.CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Łojasiewicz S. Sur le problème de la division. Studia Math 1959;18:87–136.MathSciNetzbMATHGoogle Scholar
  21. 21.
    Łojasiewicz S. Sur les trajectoires du gradient d’une fonction analytique, Seminari di Geometria 1982–1983 (Bologna), p. 115–117.Google Scholar
  22. 22.
    Magnani V. A Blow-up theorem for regular hypersurfaces on nilpotent groups. Manuscripta Math 2003;110(1):55–76.CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Milnor J. On the Betti numbers of real varieties. Proc Amer Math Soc 1964;15:275–280.CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Rashevsky PK. Any two points of a totally nonholonomic space may be connected by an admissible line. Uch Zap Ped Inst im Liebknechta Ser Phys Math 1938;2:83–94.Google Scholar
  25. 25.
    Strichartz R S. Sub-Riemannian geometry. J Diff Geom 1986;24:221–263.MathSciNetzbMATHGoogle Scholar
  26. 26.
    Sussmann HJ. Orbits of families of vector fields and integrability of distributions. Trans Amer Math Soc 1973;180:171–188.CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    Thom R. Sur l’homologie des variétés algébriques réelles. Differential and combinatorial topology (A Symposium in Honor of Marston Morse). Princeton: Princeton University Press; 1965, pp. 255–265.Google Scholar
  28. 28.
    Vogel T. Existence of Engel structures. Ann Math (2) 2009;169(1):79–137.CrossRefzbMATHGoogle Scholar
  29. 29.
    Zhitomirskii MY. Normal forms of germs of two-dimensional distributions on ℝ4. (Russian) Funktsional Anal i Prilozhen 1990;24(2):81–82. translation in Funct Anal Appl 1990;24(2):150–152.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of MathematicsHanoiVietnam
  2. 2.Laboratoire de Mathématiques (LAMA) UMR-5127 CNRS, Campus Scientifique, Université de SavoieLe Bourget-du-Lac cedexFrance

Personalised recommendations