Journal of Dynamical and Control Systems

, Volume 16, Issue 2, pp 267–300 | Cite as

Ducks on the torus: existence and uniqueness

  • I. V. Schurov


We show that there exist generic slow-fast systems with only one (time-scaling) parameter on the two-torus, which have canard cycles for arbitrary small values of this parameter. This is in drastic contrast with the planar case, where canards usually occur in two-parametric families. Here we treat systems with a convex slow curve. In this case there is a set of parameter values accumulating to zero for which the system has exactly one attracting and one repelling canard cycle. The basin of the attracting cycle is almost the whole torus.

Key words

and phrases Slow-fast systems canards limit cycles Poincaré map distortion lemma 

2000 Mathematics Subject Classification

34E15 37G15 70K70 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Anosova, On invariant manifolds in singulalry perturbed systems. J. Dynam. Control Syst. 5 (1999), No. 4, 501–507.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    _____, Invariant manifolds in singularly perturbed systems. Proc. Steklov Math. Inst. 236 (2002), 19–24.MathSciNetGoogle Scholar
  3. 3.
    A. Denjoy, Sur les courbes définies par des équations différentielles à la surface du tore. J. Math. Pure Appl. 11 (1932), 333–375.zbMATHGoogle Scholar
  4. 4.
    M. Diener, The canard unchained or how fast/slow dynamical systems bifurcate. Math. Intel. 6 (1984), 38–48.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    F. Dumortier and R. Roussarie, Canard cycles and center manifolds. Mem. Amer. Math. Soc. 121 (1996).Google Scholar
  6. 6.
    N. Fenichel, Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equations 31 (1979), 53–98.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    J. Guckenheimer and Yu. S. Ilyashenko, The duck and the devil: canards on the staircase. Moscow Math. J. 1 (2001), No. 1, 27–47.zbMATHMathSciNetGoogle Scholar
  8. 8.
    M. Krupa and P. Szmolyan, Extending geometric singular perturbation theory to nonhyperbolic points — fold and canard points in two dimensions. SIAM J. Math. Anal. 33, No. 2, 286–314.Google Scholar
  9. 9.
    E. F. Mishchenko and N. Kh. Rozov, Differential equations with small parameters and relaxation oscillations. Plenum Press, New York (1980).zbMATHGoogle Scholar
  10. 10.
    A. Schwartz, A generalization of Poincaré–Bendixon theorem to closed two dimensional manifolds. Amer. J. Math. 85 (1963), 453–458.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations