Journal of Dynamical and Control Systems

, Volume 16, Issue 1, pp 1–21 | Cite as

Closed loop stability of measure-driven impulsive control systems

Article

Abstract

Closed loop stabilization of impulsive control systems containing a measure in the dynamics is considered. It is proved that, as for regular affine systems, an almost everywhere continuous stabilizing impulsive feedback control law exists for such impulsive systems. An example illustrating the loop closing features is also presented.

Key words and phrases

Closed loop systems stabilization impulsive systems measure-driven systems 

2000 Mathematics Subject Classification

93D15 34A37 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Bressan Jr. and F. Rampazzo, Impulsive control systems with commutative vector fields. J. Optim. Theory Appl. 71 (1991), No. 1, 67–83.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. Bressan and F. Rampazzo, On differential systems with vector-valued impulsive controls. Un. Mat. Ital. B (7) 2 (1988), No. 3, 641–656.MATHMathSciNetGoogle Scholar
  3. 3.
    G. Dal Maso and F. Rampazzo, On systems of ordinary differential equations with measures as controls. Differential Integral Equations 4 (1991), No. 4, 739–765.MATHMathSciNetGoogle Scholar
  4. 4.
    D. Yu. Karamzin, Necessary conditions of the minimum in an impulse optimal control problem. J. Math. Sci. 139 (2006), No. 6, 7087–7150.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    B. M. Miller and E. Ya. Rubinovich, Impulsive control in continuous and discrete-continuous systems. Kluwer Academic/Plenum Publishers, New York (2003).MATHGoogle Scholar
  6. 6.
    F. L. Pereira and G. N. Silva, Stability for impulsive control systems. Dynam. Systems 17 (2002), No. 4, 421–434.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    _____, Lyapunov stability for impulsive control systems. Differential Equations 40 (2004), No. 8, 1122–1130.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    _____, Necessary conditions of optimality for vector-valued impulsive control problems. Systems Control Lett. 40 (2000), No. 3, 205–215.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    L. Rifford, Existence of Lipschitz and semiconcave control-Lyapunov functions. SIAM J. Control Optim. 39 (2000), No. 4, 1043–1064.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    _____, Semiconcave control-Lyapunov functions and stabilizing feedbacks. SIAM J. Control Optim. 41 (2002), No. 3, 659–681.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    _____, Stratified semiconcave control-Lyapunov functions and the stabilization problem. Ann. Inst. H. Poincaré. Anal. Non Linéaire 22 (2005), No. 3, 343–384.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    _____, On the existence of local smooth repulsive stabilizing feedbacks in dimension three. J. Differential Equations 226 (2006), No. 2, 429–500.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    R. W. Rishel, An extended Pontryagin principle for control systems whose control laws contain measures. J. Soc. Indust. Appl. Math. Ser. A 3 (1965), 191–205.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    G. N. Silva and R. B. Vinter, Measure driven differential inclusions. J. Math. Anal. Appl. 202 (1996), No. 3, 727–746.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    E. D. Sontag, A “universal” construction of Artstein’s theorem on nonlinear stabilization. Systems Control Lett. 13 (1989), No. 2, 117–123.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    J. Warga, Optimal control of differential and functional equations. Academic Press, New York (1972).MATHGoogle Scholar
  17. 17.
    P. R. Wolenski and S. Žabić, A sampling method and approximation results for impulsive systems. SIAM J. Control Optim. 46 (2007), No. 3, 983–998.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  2. 2.Universidade Estadual Paulista, UNESPSão José do Rio PretoBrazil

Personalised recommendations