Feasibility in finite time

Article
  • 45 Downloads

Abstract

It is common to tolerate that a system’s performance be unsustainable during an interim period. To live long however, its state must eventually satisfy various constraints. In this regard we design here differential inclusions that generate, in one generic format, two distinct phases of system dynamics. The first ensures feasibility in finite time; the second maintains that property forever after.

Key words and phrase

Differential inclusions generalized subdifferentials duality mapping distance function prox-regularity finite-time absorption sweeping processes 

2000 Mathematics Subject Classification

28B05 34A60 37C10 37F05 

References

  1. 1.
    E. Asplund, Chebyshev sets in Hilbert space. Trans. Am. Math. Soc. 144 (1969), 235–240.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    J. P. Aubin, Viability theory. Birkhäuser, Basel (1991).MATHGoogle Scholar
  3. 3.
    J. P. Aubin and A. Cellina, Differential inclusions. Springer-Verlag, Berlin (1984).MATHGoogle Scholar
  4. 4.
    J. P. Aubin and I. Ekeland, Applied nonlinear analysis. Wiley, New York (1984).MATHGoogle Scholar
  5. 5.
    J. P. Aubin and H. Frankowska, Set-valued analysis. Birkhäuser, Basel (1990).MATHGoogle Scholar
  6. 6.
    G. Beer, Topologies on closed and closed convex sets. Kluwer Academic, Dordrecht (1993).MATHGoogle Scholar
  7. 7.
    H. Benabdellah, Existence of solutions to the nonconvex sweeping process. J. Differ. Equations 164 (2000), 286–295.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    J. M. Borwein and S. P. Fitzpatrick, Existence of nearest points in Banach space. Can. J. Math. 41 (1989), No. 4, 702–720.MATHMathSciNetGoogle Scholar
  9. 9.
    J. M. Borwein, S. P. Fitzpatrick, and J. R. Giles, The differentiability of real functions on normed linear spaces using generalized subgradients. J. Math. Anal. Appl. 128 (1987) 512–534.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    M. Bounkhel and L. Thibault, On various notions of regularity of sets in nonsmooth analysis. Nonlin. Anal. TMA 48 (2002), 223–246.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    B. Brogliato, A. Daniilidis, C. Maréchal, and V. Acary, On the equivalence between complementarity systems, projected systems and differential inclusions. Syst. Control Lett. 55 (2006) 45–51.MATHCrossRefGoogle Scholar
  12. 12.
    C. Castaing, Version aléatoire du problème de raffle par un convexe. Sém. Anal. Conv. Montpellier 1 (1974).Google Scholar
  13. 13.
    C. Castaing, T. X. Duc Ha, and M. Valadier, Evolution equations governed by the sweeping process. Set-Valued Anal. A (1993) 109–139.CrossRefMathSciNetGoogle Scholar
  14. 14.
    C. Castaing and M. D. P. Monteiro Marques, Evolution problems associated with nonconvex closed moving sets. Port. Math. 53 (1996) 73–87.MATHMathSciNetGoogle Scholar
  15. 15.
    F. H. Clarke, R. J. Stern, and P. R. Wolenski, Proximal smoothness and the lower C 2 property. J. Convex Anal. 2 (1995) 117–144.MATHMathSciNetGoogle Scholar
  16. 16.
    F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Nonsmooth analysis and control theory. Springer-Verlag, Berlin (1998).MATHGoogle Scholar
  17. 17.
    K. Deimling, Multivalued differential equations. De Gruyter, Berlin (1992).MATHGoogle Scholar
  18. 18.
    J.-B. Hiriart-Urruty, Ensembles de Tchebychev vs. ensembles convexes: l’etat de la situation vu par l’analyse convexe non lisse. Ann. Sci. Math Que. 22 (1998) 47–62.MATHMathSciNetGoogle Scholar
  19. 19.
    A. Jourani, Weak regularity of functions and sets in Asplund spaces. Nonlin. Anal. TMA 65 (2006) 660–676.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    A. Jourani and L. Thibault, Metric regularity and subdifferential calculus in Banach spaces. Set-Valued Anal. 3 (1995) 87–100.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    B. S. Mordukhovich, Approximation methods in problems of optimization and control [in Russian]. Nauka, Moscow (1988).Google Scholar
  22. 22.
    _____, Variational analysis and generalized differentiation. Springer-Verlag, Berlin (2006).Google Scholar
  23. 23.
    J. J. Moreau, Décomposition orthogonale d’un espace hilbertien selon deux cônes mutuellement polaires. C. R. Acad. Sci. Paris 266 (1962) 238–240.MathSciNetGoogle Scholar
  24. 24.
    _____, Rafle par un convexe variable, I. Sém. Anal. Conv. Montpellier 15 (1971).Google Scholar
  25. 25.
    _____, Problèmes d’évolution associé a un convexe mobile d’un espace hilbertien. C. R. Acad. Sci. Paris 276 (1973), 791–794.MATHMathSciNetGoogle Scholar
  26. 26.
    _____, Evolution problems associated with a moving convex set in a Hilbert space. J. Differ. Equations 26 (1977) 347–374.MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    R. A. Poliquin, R. T. Rockafellar, and L. Thibault, Local differentiability of distance functions. Trans. Am. Math. Soc. 352 (2000), No. 11, 5231–5249.MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    R. T. Rockafellar and R. J.-B. Wets, Variational analysis. Springer-Verlag, Berlin (1998).MATHCrossRefGoogle Scholar
  29. 29.
    T. Schwartz, Farthest points and monotonicity methods in Hilbert spaces. In: Proc. of Int. Conf. on Approximation and Optimization, Cluj-Napoca (1997), Vol. I, 351–356.Google Scholar
  30. 30.
    L. Thibault, Sweeping process with regular and nonregular sets. J. Differ. Equations 193 (2003) 1–26.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • S. D. Flåm
    • 1
  • J.-B. Hiriart-Urruty
    • 2
  • A. Jourani
    • 3
  1. 1.Economics DepartmentBergen UniversityBergenNorway
  2. 2.Laboratoire MIPUniversité Paul SabatierToulouseFrance
  3. 3.Institut de Mathématiques de BourgogneUniversité de BourgogneDijonFrance

Personalised recommendations