Journal of Dynamical and Control Systems

, Volume 14, Issue 4, pp 465–487 | Cite as

Optimal Attitude Control of a Rigid Body Using Geometrically Exact Computations on SO(3)

Article

Abstract

An efficient and accurate computational approach is proposed for a nonconvex optimal attitude control for a rigid body. The problem is formulated directly as a discrete time optimization problem using a Lie group variational integrator. Discrete time necessary conditions for optimality are derived, and an efficient computational approach is proposed to solve the resulting two-point boundary-value problem. This formulation wherein the optimal control problem is solved based on discretization of the attitude dynamics and derivation of discrete time necessary conditions, rather than development and discretization of continuous time necessary conditions, is shown to have significant advantages. In particular, the use of geometrically exact computations on SO(3) guarantees that this optimal control approach has excellent convergence properties even for highly nonlinear large angle attitude maneuvers.

Key words and phrases

Optimal control symplectic integrator 

2000 Mathematics Subject Classification

49J15 37M15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. T. Betts, Practical methods for optimal control using nonlinear programming. SIAM (2001).Google Scholar
  2. 2.
    A. E. Bryson and Yu-Chi Ho, Applied optimal control. Hemisphere Publishing Corporation (1975).Google Scholar
  3. 3.
    E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration illustrated by the Störmer–Verlet method. Acta Numer. 12 (2003), 399–450.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    I. I. Hussein and A. M. Bloch, Optimal control on Riemannian manifolds with potential fields. In: Proc. IEEE Conf. on Decision and Control (2004), 1982–1987.Google Scholar
  5. 5.
    I. I. Hussein, M. Leok, A. K. Sanyal, and A. M. Bloch, A discrete variational integrator for optimal control problems on SO(3). Proc. IEEE Conf. on Decision and Control (2006), 6636–6641.Google Scholar
  6. 6.
    A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, and A. Zanna, Lie-group methods. Acta Numer. 9 (2000), 215–365.Google Scholar
  7. 7.
    O. Junge, J. E. Marsden, and S. Ober-Blöbaum, Discrete mechanics and optimal control. IFAC Congr., Praha (2005).Google Scholar
  8. 8.
    V. Jurdjevic, Geometric control theory. Cambridge Univ. Press (1997).Google Scholar
  9. 9.
    C. T. Kelley, Iterative methods for linear and nonlinear equations. SIAM (1995).Google Scholar
  10. 10.
    T. Lee, M. Leok, and N. H. McClamroch, A Lie group variational integrator for the attitude dynamics of a rigid body with applications to the 3D pendulum. Proc. IEEE Conf. on Control Applications (2005), 962–967.Google Scholar
  11. 11.
    _____, Attitude maneuvers of a rigid spacecraft in a circular orbit. Proc. Amer. Control Conf. (2005), 1742–1747.Google Scholar
  12. 12.
    _____, Optimal attitude control for a rigid body with symmetry. Proc. Amer. Control Conf. (2007), 1073–1078. http://arxiv.org/abs/math.OC/06009482.
  13. 13.
    _____, A combinatorial optimal control problem for spacecraft formation reconfiguration. Proc. IEEE Conf. on Decision and Control (2007). http://arxiv.org/abs/math.OC/0702738.
  14. 14.
    _____, Optimal control of a rigid body using geometrically exact computations on SE(3). Proc. IEEE Conf. on Decision and Control (2006), 2170–2175. http://arxiv.org/abs/math.OC/0602588.
  15. 15.
    _____, Lie group variational integrators for the full body problem. Comput. Methods Appl. Mech. Engineering 196 (2007), 2907–2924.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    _____, Lie group variational integrators for the full body problem in orbital mechanics. Celest. Mech. Dynam. Astronomy 98 (2007), No. 2, 121–144.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    _____, Time optimal attitude control for a rigid body. Proc. Amer. Control Conf. (2008).Google Scholar
  18. 18.
    M. Leok, Generalized Galerkin variational integrators. Preprint (2004), http://arxiv.org/math.NA/0508360.
  19. 19.
    _____, Foundations of computational geometric mechanics. California Inst. of Technology (2004).Google Scholar
  20. 20.
    T. R. Littell, R. D. Skeel, and M. Zhang, Error analysis of symplectic multiple time stepping. SIAM J. Numer. Anal. 34 (1997), No. 5, 1792–1807.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    J. E. Marsden and M. West, Discrete mechanics and variational integrators. Acta Numer. 10 (2001), 357–514.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    J. Shen, A. K. Sanyal, N. A. Chaturvedi, D. Bernstein, and N. H. Mc-Clamroch, Dynamics and control of a 3D pendulum. Proc. 43rd IEEE Conf. on Decision and Control (2004), 323–328.Google Scholar
  23. 23.
    K. Spindler, Optimal control on Lie groups with applications to attitude control. Math. Control Signals Systems 11 (1998), 197–219.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    M. Suzuki, Improved Trotter-like formula. Phys. Lett. A 180 (1993), No. 3, 232–234.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    B. Wie, Space vehicle dynamics and control. AIAA (1998).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Department of MathematicsPurdue UniversityWest LafayetteUSA

Personalised recommendations