Journal of Dynamical and Control Systems

, Volume 14, Issue 1, pp 43–70

Conic Distributions and Accessible Sets

Article
  • 43 Downloads

Abstract

Motivated by nonlinear control theory, we introduce the notion of conic distributions on a smooth manifold. We study topological and smoothness aspects of the set of accessible points associated with a conic distribution. We introduce the notion of abnormal paths and study their relation to boundary points of the accessible set. In particular, we provide sufficient conditions for the accessible set to be a maximal integral of the smallest integrable vector distribution containing the conic distribution. Under rather strong conditions, we are able to prove that the accessible set has the structure of a ‘manifold with corners’.

Key words and phrases

Geometric control theory accessible sets conic distributions 

2000 Mathematics Subject Classification

93Bxx 58E25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Agrachev and Yu. Sachkov, Control theory from the geometric viewpoint. Encycl. Math. Sci. 87, Springer-Verlag (2004).Google Scholar
  2. 2.
    R.-M. Bianchini and M. Kawski, Needle variations that cannot be summed. SIAM J. Control Optim. 42 (2003), 218–238.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    H. Frankowska, Contingent cones to reachable sets of control systems. SIAM J. Control Optim. 27 (1989), 170–198.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    V. Jurdjevic, Geometric control theory. Cambridge Stud. Adv. Math. 51, Cambridge Univ. Press (1997).Google Scholar
  5. 5.
    B. Langerock, Geometric aspects of the maximum principle and lifts over a bundle map. Acta Appl. Math. 77 (2003), 71–104. math.DG/0212055.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    P. Libermann and C.-M. Marle, Symplectic geometry and analytical mechanics. Reidel, Dortrecht (1987).MATHGoogle Scholar
  7. 7.
    R. Melrose, Differential analysis on manifolds with corners. E-print http://www-math.mit.edu/~rbm/book.html.
  8. 8.
    R. Montgomery, Abnormal minimizers. SIAM J. Control Optim. 32 (1994), 1605–1620.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    H. Nikaido, Convex structures and economic theory. Math. Sci. Eng. 51, Academic Press, New York (1968).Google Scholar
  10. 10.
    L. Pontryagin, V. Boltyanskii, R. Gamklelidze, and E. Mishchenko, The mathematical theory of optimal processes. Wiley, Interscience (1962).Google Scholar
  11. 11.
    P. Popescu, On the geometry of relative tangent spaces. Rev. Roumaine Math. Pures Appl. 37 (1992), 727–733.MATHMathSciNetGoogle Scholar
  12. 12.
    P. Stefan, Accessibility and foliations with singularities. Bull. Amer. Math. Soc. 80 (1974), 1142–1145.MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    _____, Accessible sets, orbits, and foliations with singularities. Proc. London Math. Soc. 29 (1974), 699–713.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    H. Sussmann, Orbits of families of vector fields and integrability of distributions. Trans. Amer. Math. Soc. 180 (1973), 171–188.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    _____, A general theorem on local controllability. SIAM J. Control Optim. 25 (1987), 158–194.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    An introduction to the coordinate-free maximum principle. In: Geometry of Feedback and Optimal Control (B. Jakubczyk and W. Respondek, eds.) Marcel Dekker, New York (1997), pp. 463–557.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of ArchitectureSt.-Lucas Institute for Higher Education in the Sciences & the Arts (W&K)GhentBelgium

Personalised recommendations