Advertisement

Journal of Dynamical and Control Systems

, Volume 13, Issue 1, pp 69–93 | Cite as

Dynamic Coverage Optimal Control for Multiple Spacecraft Interferometric Imaging

  • Islam I. HusseinEmail author
  • Anthony M. Bloch
Article

Abstract

In this paper, we study and generalize a class of optimal control problems known in the literature as τ-elastic variational optimal control problems. In the τ-elastic optimal control, we want to minimize a cost function over trajectories that evolve on a Riemannian manifold and satisfy a second-order differential equation together with some smoothness and motion constraints. The cost function is a weighted sum of the squared norm of the acceleration and the squared norm of the velocity. Here, we generalize the τ-elastic variational problem to the dynamic coverage optimal control problem, which is a class of optimal control problems motivated by multiple spacecraft formation flying for imaging applications. The main novelty of this paper is an interesting connection between multiple spacecraft formation flying and the τ-elastic and coverage optimal control problems.

2000 Mathematics Subject Classification

34H05 49J40 49K15 93C15 

Key words and phrases

Optimal control geometric mechanics τ-elastic variational problem dynamic coverage optimal control multi-spacecraft imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    NASA Origins Program. URL: http://origins.jpl.nasa.gov (2004).
  2. 2.
    J. S. Bay, Fundamentals of linear state space systems. McGraw-Hill, Boston, MA (1999).Google Scholar
  3. 3.
    A. Bloch, J. Baillieul, P. E. Crouch, and J. E. Marsden, Nonholonomic mechanics and control. Springer-Verlag, New York (2003).zbMATHGoogle Scholar
  4. 4.
    A. Bloch and P. Crouch, Nonholonomic and vakonomic control systems on Riemannian manifolds. Fields Inst. Commun. 1 (1993), 25–52.MathSciNetGoogle Scholar
  5. 5.
    A. Bloch, P. Crouch, and T. Ratiu, Sub-Riemannian optimal control problems. Fields Inst. Commun. 3 (1994), 35–48.MathSciNetGoogle Scholar
  6. 6.
    R. Brockett, Control theory and singular Riemannian geometry. In: New Directions in Applied Mathematics (P. J. Hilton and G. S. Young, eds.) Springer-Verlag (1981), pp. 11–27.Google Scholar
  7. 7.
    M. Camarinha, The geometry of cubic polynomials in Riemannian manifolds. Ph.D. thesis, Univ. de Coimbra (1996).Google Scholar
  8. 8.
    S. Chakravorty, Design and optimal control of multi-spacecraft interferometric imaging systems. Ph.D. thesis, Aerospace Engineering, Univ. of Michigan (2004).Google Scholar
  9. 9.
    P. Crouch and J. W. Jackson, Dynamic interpolation for linear systems. In: 29th IEEE Conf. on Decision and Control (1990), pp. 2312–2314.Google Scholar
  10. 10.
    P. Crouch and F. Silva-Leite, Geometry and the dynamic interpolation problem. In: Proc. 1991 Amer. Control Conf. (1991), pp. 1131–1136.Google Scholar
  11. 11.
    P. Crouch and F. Silva-Leite, The dynamic interpolation problem: On Riemannian manifolds, Lie groups and symmetric spaces. J. Dynam. Control Systems 1 (1995), 177–202.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    P. W. Gorham, W. M. Folkner, and G. H. Blackwood, Enabling concepts for a dual spacecraft formation-flying optical interferometer for NASA’s ST3 mission. In: Proc. 1999 Dana Pt. Conf. on Optical Interferometry 194 (1999), p. 359.Google Scholar
  13. 13.
    I. I. Hussein, Motion planning for multi-spacecraft interferometric imaging systems. Ph.D. thesis, Univ. of Michigan (2005).Google Scholar
  14. 14.
    I. I. Hussein and A. M. Bloch, Dynamic coverage optimal control for interferometric imaging spacecraft formations. In: 43 IEEE Conf. on Decision and Control (2004), pp. 1812–1817.Google Scholar
  15. 15.
    I. I. Hussein and A. M. Bloch, Dynamic interpolation on Riemannian manifolds: An application to interferometric imaging. In: Proc. 2004 Amer. Control Conf. (2004), pp. 413–418.Google Scholar
  16. 16.
    I. I. Hussein and A. M. Bloch, Optimal control on Riemannian manifolds with potential fields. In: 43 IEEE Conf. on Decision and Control (2004), pp. 1982–1987.Google Scholar
  17. 17.
    I. I. Hussein, A. M. Bloch, D. J. Scheeres, and N. H. McClamroch, Optimal fuel-image motion planning for a class of dual spacecraft formations. In: 2005 Amer. Control Conf. (2005), to appear.Google Scholar
  18. 18.
    I. I. Hussein, D. J. Scheeres, and D. C. Hyland, Control of a satellite formation for imaging applications. In: Proc. 2003 Amer. Control Conf. (2003), pp. 308–313.Google Scholar
  19. 19.
    J. Milnor, Morse theory. Princeton Univ. Press, Princeton, New Jersey (1963).zbMATHGoogle Scholar
  20. 20.
    L. Noakes, G. Heinzinger, and B. Paden, Cubic splines on curved spaces. IMA J. Math. Control Information 6 (1989), 465–473.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    F. Silva-Leite, M. Camarinha, and P. Crouch, Elastic curves as solutions of Riemannian and sub-Riemannian control problems. Math. Control Signals Systems 13 (2000), 140–155.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.University of MichiganAnn ArborUSA

Personalised recommendations