Advertisement

Cognitive and Behavioral Functioning Among Fraternal Twins with an Unbalanced Translocation of Chromosomes 10q and 12p: A Case Report

  • Daryaneh BadalyEmail author
  • Kimberley P. Heinrich
  • Anna Davis
  • Angela M. Fish
  • Mohammad Ghaziuddin
ORIGINAL ARTICLE
  • 10 Downloads

Abstract

Because neurodevelopmental disorders, such as autism spectrum disorder, intellectual disability, and language disorder, are genetically heterogeneous, there is a need for exploring their many pathways, and case studies provide a means to do so in rare conditions. We present a case study describing fraternal twins with an unbalanced translocation, resulting in a partial trisomy of chromosome 10 (q24.1) and a partial monosomy of chromosome 12 (p13). The twin’s father, a healthy individual with typical development, was found to have a balanced translocation between chromosomes 10q and 12p. Although a handful of cases have described individuals with only trisomies of chromosome 10q or only monosomies of chromosome 12p, none have examined children with both chromosomal aberrations. We describe the children’s cognitive and behavioral phenotype (including autism spectrum disorder, moderate intellectual disability, and language disorder), discuss a possible genetic mechanism contributing to their comorbidities (i.e., 12p13 microdeletions), and review other potential contributing factors to their presentation.

Keywords

Chromosome 10q Chromosome 12p Autism spectrum disorder Intellectual disability 

Notes

Acknowledgments

We are grateful for the participation of “Elizabeth” and “Edward,” their parents, and their teachers.

Compliance with Ethical Standards

Ethical Approval

All procedures performed for this case report involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments.

Informed Consent

Informed consent was obtained from the parents of the children included in this case report.

Conflict of Interest

The authors declare no conflicts of interest. No authors are U.S. federal government employees.

References

  1. Abdelmoity, A. T., Hall, J. J., Bittel, D. C., & Yu, S. (2011). 1.39 Mb inherited interstitial deletion in 12p13. 33 associated with developmental delay. European Journal of Medical Genetics., 54(2), 198–203.CrossRefGoogle Scholar
  2. Abrahams, B. S., & Geschwind, D. H. (2008). Advances in autism genetics: On the threshold of a new neurobiology. Nature Reviews Genetics, 9(5), 341–355.CrossRefGoogle Scholar
  3. Achenbach, T. M. (2009). The Achenbach System of Empirically Based Assessment (ASEBA): Development, findings, theory, and applications. Burlington: University of Vermont Research Center for Children, Youth, & Families.Google Scholar
  4. Al-Sarraj, Y., Al-Khair, H. A., Taha, R. Z., Khattab, N., El Sayed, Z. H., Elhusein, B., & El-Shanti, H. (2014). Distal trisomy 10q syndrome, report of a patient with duplicated q24. 31–qter, autism spectrum disorder and unusual features. Clinical Case Reports, 2(5), 201–205.CrossRefGoogle Scholar
  5. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington: American Psychiatric Publishing.CrossRefGoogle Scholar
  6. Anazi, S., Maddirevula, S., Faqeih, E., Alsedairy, H., Alzahrani, F., Shamseldin, H. E., et al. (2017). Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield. Molecular Psychiatry, 22(4), 615–624.CrossRefGoogle Scholar
  7. Baio, J., Wiggins, L., Christensen, D. L., Maenner, M. J., Daniels, J., Warren, Z., et al. (2018). Prevalence of autism spectrum disorder among children aged 8 years–autism and developmental disabilities monitoring network, 11 sites, United States, 2014. Morbidity and Mortality Weekly Report: Surveillance Summaries, 67(6), 1–23.Google Scholar
  8. Baker, E., Hinton, L., Callen, D. F., Haan, E. A., Dobbie, A., & Sutherland, G. R. (2002). A familial cryptic subtelomeric deletion 12p with variable phenotypic effect. Clinical Genetics, 61(3), 198–201.CrossRefGoogle Scholar
  9. Beery, K. E., Buktenica, N. A., & Beery, N. A. (2010). Beery-Buktenica Developmental Test of Visual-Motor Integration (6th ed.). Bloomington: Pearson.Google Scholar
  10. Benger, M., Kinali, M., & Mazarakis, N. D. (2018). Autism spectrum disorder: Prospects for treatment using gene therapy. Molecular Autism, 9(1), 39.CrossRefGoogle Scholar
  11. Betancur, C. (2011). Etiological heterogeneity in autism spectrum disorders: More than 100 genetic and genomic disorders and still counting. Brain Research, 1380, 42–77.CrossRefGoogle Scholar
  12. Bracken, B. A. (2007). Bracken School Readiness Assessment (3rd ed.). San Antonio: Psychological Corporation.Google Scholar
  13. Carrow-Woolfolk, E. (2011). Oral and Written Language Scales (2nd ed.). Torrance: Western Psychological Services.Google Scholar
  14. Chen, C., Van Horn, J. D., & GENDAAR Research Consortium. (2017a). Developmental neurogenetics and multimodal neuroimaging of sex differences in autism. Brain Imaging and Behavior, 11(1), 38–61.CrossRefGoogle Scholar
  15. Chen, X. S., Reader, R. H., Hoischen, A., Veltman, J. A., Simpson, N. H., Francks, C., et al. (2017b). Next-generation DNA sequencing identifies novel gene variants and pathways involved in specific language impairment. Scientific Reports, 7, 46105.CrossRefGoogle Scholar
  16. Constantino, J. N., & Gruber, C. P. (2005). Social Responsiveness Scale. Los Angeles: Western Psychological Services.Google Scholar
  17. de la Torre-Ubieta, L., Won, H., Stein, J. L., & Geschwind, D. H. (2016). Advancing the understanding of autism disease mechanisms through genetics. Nature Medicine, 22(4), 345–361.CrossRefGoogle Scholar
  18. Devlin, B., & Scherer, S. W. (2012). Genetic architecture in autism spectrum disorder. Current Opinion in Genetics & Development, 22(3), 229–237.CrossRefGoogle Scholar
  19. Dunn, L. M., & Dunn, D. M. (2007). Peabody Picture Vocabulary Test (4th ed.). Minneapolis, MN: Pearson.Google Scholar
  20. Eicher, J. D., & Gruen, J. R. (2015). Language impairment and dyslexia genes influence language skills in children with autism spectrum disorders. Autism Research, 8(2), 229–234.CrossRefGoogle Scholar
  21. Fanizza, I., Bertuzzo, S., Beri, S., Scalera, E., Massagli, A., Sali, M. E., et al. (2014). Genotype–phenotype relationship in a child with 2.3 Mb de novo interstitial 12p13. 33-p13. 32 deletion. European Journal of Medical Genetics, 57(7), 334–338.CrossRefGoogle Scholar
  22. Filipek, P. A., Accardo, P. J., Ashwal, S., Baranek, G. T., Cook, E. H., Dawson, G., et al. (2000). Practice parameter: Screening and diagnosis of autism: Report of the quality standards Subcommittee of the American Academy of neurology and the child neurology society. Neurology, 55(4), 468–479.CrossRefGoogle Scholar
  23. Firth, H. V., Richards, S. M., Bevan, A. P., Clayton, S., Corpas, M., Rajan, D., et al. (2009). DECIPHER: Database of chromosomal imbalance and phenotype in humans using ensembl resources. American Journal of Human Genetics, 84(4), 524–533.CrossRefGoogle Scholar
  24. Glass, I. A., Trenholme, A., Mildenhall, L., Bailey, R. J., & Cotter, P. D. (2000). Mild phenotype in two siblings with distal monosomy 12p13. 31→ pter. Clinical Genetics, 57(5), 401–405.CrossRefGoogle Scholar
  25. Graham, S. A., & Fisher, S. E. (2015). Understanding language from a genomic perspective. Annual Review of Genetics, 49, 131–160.CrossRefGoogle Scholar
  26. Harrison, P. L., & Oakland, T. (2003). Adaptive Behavior Assessment System (2nd ed.). San Antonio, TX: Harcourt Assessment.Google Scholar
  27. Hvidtjørn, D., Schieve, L., Schendel, D., Jacobsson, B., Sværke, C., & Thorsen, P. (2009). Cerebral palsy, autism spectrum disorders, and developmental delay in children born after assisted conception: A systematic review and meta-analysis. Archives of Pediatrics & Adolescent Medicine, 163(1), 72–83.CrossRefGoogle Scholar
  28. Hvidtjørn, D., Grove, J., Schendel, D., Schieve, L. A., Sværke, C., Ernst, E., & Thorsen, P. (2011). Risk of autism spectrum disorders in children born after assisted conception: A population-based follow-up study. Journal of Epidemiology & Community Health, 65(6), 497–502.CrossRefGoogle Scholar
  29. Johnson, C. P., & Myers, S. M. (2007). Identification and evaluation of children with autism spectrum disorders. Pediatrics, 120(5), 1183–1215.CrossRefGoogle Scholar
  30. Kardon, N. B. (2003). Chromosome 10, distal trisomy 10q. In National Organization for Rare Disorders (Ed.), NORD Guide to Rare Disorders. Philadelphia: Lippincott, Williams, & Wilkins.Google Scholar
  31. Kirkovski, M., Enticott, P. G., & Fitzgerald, P. B. (2013). A review of the role of female gender in autism spectrum disorders. Journal of Autism and Developmental Disorders, 43(11), 2584–2603.CrossRefGoogle Scholar
  32. Kolevzon, A., Gross, R., & Reichenberg, A. (2007). Prenatal and perinatal risk factors for autism: A review and integration of findings. Archives of Pediatrics & Adolescent Medicine, 161(4), 326–333.CrossRefGoogle Scholar
  33. Korkman, M., Kirk, U., & Kemp, S. (2007). NEPSY-II: A Developmental Neuropsychological Assessment (2nd ed.). San Antonio: Psychological Corporation.Google Scholar
  34. Langridge, A. T., Glasson, E. J., Nassar, N., Jacoby, P., Pennell, C., Hagan, R., Bourke, J., Leonard, H., & Stanley, F. J. (2013). Maternal conditions and perinatal characteristics associated with autism spectrum disorder and intellectual disability. PLoS One, 8(1), e50963.CrossRefGoogle Scholar
  35. Leyser, M., Dias, B. L., Coelho, A. L., Vasconcelos, M., & Nascimento, O. J. (2016). 12p deletion spectrum syndrome: A new case report reinforces the evidence regarding the potential relationship to autism spectrum disorder and related developmental impairments. Molecular Cytogenetics, 9(1), 75.CrossRefGoogle Scholar
  36. Li, J., Cai, T., Jiang, Y., Chen, H., He, X., Chen, C., et al. (2016). Genes with de novo mutations are shared by four neuropsychiatric disorders discovered from NPdenovo database. Molecular Psychiatry, 21(2), 290–297.CrossRefGoogle Scholar
  37. Lord, C., Rutter, M., DiLavore, P. C., Risi, S., Gotham, K., & Bishop, S. (2012). Autism Diagnostic Observation Scale: Modules 1 Through 4 (2nd ed.). Los Angeles: Western Psychological Services.Google Scholar
  38. Lu, G., Gurevich, I., Vo, B. T., & Chen, S. S. (2009). t(10; 12)(q24; p13) as the sole abnormality in a case with refractory acute myeloid leukemia: The first case report and literature review. Beijing Da Xue Xue Bao Yi Xue Ban, 41(4), 480–483.Google Scholar
  39. Macdonald, A. H., Rodríguez, L., Aceña, I., Martínez-Fernández, M. L., Sánchez-Izquierdo, D., Zuazo, E., & Martínez-Frías, M. L. (2010). Subtelomeric deletion of 12p: Description of a third case and review. American Journal of Medical Genetics, 152(6), 1561–1566.Google Scholar
  40. Madrigal, I., Martinez, M., Rodriguez-Revenga, L., Carrió, A., & Milà, M. (2012). 12p13 rearrangements: 6 Mb deletion responsible for ID/MCA and reciprocal duplication without clinical responsibility. American Journal of Medical Genetics, 158(5), 1071–1076.CrossRefGoogle Scholar
  41. Miller, D. T., Adam, M. P., Aradhya, S., Biesecker, L. G., Brothman, A. R., Carter, N. P., et al. (2010). Consensus statement: Chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. American Journal of Human Genetics, 86(5), 749–764.CrossRefGoogle Scholar
  42. Mononen, T., Sharp, A., Laakso, M., Meltoranta, R. L., Valve-Dietz, A. K., & Heinonen, K. (2003). Partial trisomy 10q with mild phenotype caused by an unbalanced X; 10 translocation. Journal of Medical Genetics, 40(5), e61.CrossRefGoogle Scholar
  43. Moreno-De-Luca, A., Myers, S. M., Challman, T. D., Moreno-De-Luca, D., Evans, D. W., & Ledbetter, D. H. (2013). Developmental brain dysfunction: Revival and expansion of old concepts based on new genetic evidence. The Lancet Neurology, 12(4), 406–414.CrossRefGoogle Scholar
  44. Muhle, R. A., Reed, H. E., Vo, L. C., Mehta, S., McGuire, K., Veenstra-VanderWeele, J., & Pedapati, E. (2017). Clinical diagnostic genetic testing for individuals with developmental disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 56(11), 910–913.Google Scholar
  45. Nelson, H. D., Nygren, P., Walker, M., & Panoscha, R. (2006). Screening for speech and language delay in preschool children: Systematic evidence review for the US preventive services task force. Pediatrics, 117(2), e298–e319.CrossRefGoogle Scholar
  46. Polyak, A., Kubina, R. M., & Girirajan, S. (2015). Comorbidity of intellectual disability confounds ascertainment of autism: Implications for genetic diagnosis. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 168(7), 600–608.CrossRefGoogle Scholar
  47. Rai, D., Heuvelman, H., Dalman, C., Culpin, I., Lundberg, M., Carpenter, P., et al. (2018). Association between autism spectrum disorders with or without intellectual disability and depression in young adulthood. JAMA Network Open, 1(4), e181465–e181465.Google Scholar
  48. Ravnan, J. B., Tepperberg, J. H., Papenhausen, P., Lamb, A. N., Hedrick, J., Eash, D., et al. (2006). Subtelomere FISH analysis of 11 688 cases: An evaluation of the frequency and pattern of subtelomere rearrangements in individuals with developmental disabilities. Journal of Medical Genetics, 43(6), 478–489.CrossRefGoogle Scholar
  49. Reichenberg, A., Cederlöf, M., McMillan, A., Trzaskowski, M., Kapra, O., Fruchter, E., et al. (2016). Discontinuity in the genetic and environmental causes of the intellectual disability spectrum. Proceedings of the National Academy of Sciences, 113(4), 1098–1103.CrossRefGoogle Scholar
  50. Ritter, D. R. (1989). Teachers’ perceptions of problem behavior in general and special education. Exceptional Children, 55(6), 559–564.CrossRefGoogle Scholar
  51. Roid, G. H. (2003). Stanford-Binet Intelligence Scales (5th ed.). Itasca, IL: Riverside Publishing.Google Scholar
  52. Rooryck, C., Stef, M., Burgelin, I., Simon, D., Souakri, N., Thambo, J. B., et al. (2009). 2.3 Mb terminal deletion in 12p13. 33 associated with oculoauriculovertebral spectrum and evaluation of WNT5B as a candidate gene. European Journal of Medical Genetics, 52(6), 446–449.CrossRefGoogle Scholar
  53. Rutter, M., Bailey, A., & Lord, C. (2003a). Social Communication Questionnaire. Los Angeles: Western Psychological Services.Google Scholar
  54. Rutter, M., Le Couteur, A., & Lord, C. (2003b). ADI-R: Autism Diagnostic Interview – Revised. Los Angeles: Western Psychological Services.Google Scholar
  55. Sandin, S., Nygren, K. G., Iliadou, A., Hultman, C. M., & Reichenberg, A. (2013). Autism and mental retardation among offspring born after in vitro fertilization. JAMA, 310(1), 75–84.CrossRefGoogle Scholar
  56. Schaefer, G. B., & Mendelsohn, N. J. (2013). Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. Genetics in Medicine, 15(5), 399–407.CrossRefGoogle Scholar
  57. Shen, Y., Dies, K. A., Holm, I. A., Bridgemohan, C., Sobeih, M. M., Caronna, E. B., et al. (2010). Clinical genetic testing for patients with autism spectrum disorders. Pediatrics, 125(4), e727–e735.CrossRefGoogle Scholar
  58. Silva, I. M., Rosenfeld, J., Antoniuk, S. A., Raskin, S., & Sotomaior, V. S. (2014). A 1.5 Mb terminal deletion of 12p associated with autism spectrum disorder. Gene, 542(1), 83–86.CrossRefGoogle Scholar
  59. Strömberg, B., Dahlquist, G., Ericson, A., Finnström, O., Köster, M., & Stjernqvist, K. (2002). Neurological sequelae in children born after in-vitro fertilisation: A population-based study. The Lancet, 359(9305), 461–465.CrossRefGoogle Scholar
  60. Taylor, D. J., Davidson, J., Howie, P. W., Davidson, D., & Drillien, C. M. (1985). Do pregnancy complications contribute to neurodevelopmental disability? The Lancet, 325(8431), 713–716.CrossRefGoogle Scholar
  61. Thevenon, J., Callier, P., Andrieux, J., Delobel, B., David, A., Sukno, S., et al. (2013). 12p13. 33 microdeletion including ELKS/ERC1, a new locus associated with childhood apraxia of speech. European Journal of Human Genetics, 21(1), 82.CrossRefGoogle Scholar
  62. Van Wijngaarden-Cremers, P. J., van Eeten, E., Groen, W. B., Van Deurzen, P. A., Oosterling, I. J., & Van der Gaag, R. J. (2014). Gender and age differences in the core triad of impairments in autism spectrum disorders: A systematic review and meta-analysis. Journal of Autism and Developmental Disorders, 44(3), 627–635.CrossRefGoogle Scholar
  63. Vissers, L. E., Gilissen, C., & Veltman, J. A. (2016). Genetic studies in intellectual disability and related disorders. Nature Reviews Genetics, 17(1), 9–18.CrossRefGoogle Scholar
  64. Volkmar, F., Siegel, M., Woodbury-Smith, M., King, B., McCracken, J., State, M., & American Academy of Child and Adolescent Psychiatry Committee on Quality Issues. (2014). Practice parameter for the assessment and treatment of children and adolescents with autism spectrum disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 53(2), 237–257.CrossRefGoogle Scholar
  65. Werner, E., Simonian, K., Bierman, J. M., & French, F. E. (1967). Cumulative effect of perinatal complications and deprived environment on physical, intellectual, and social development of preschool children. Pediatrics, 39(4), 490–505.Google Scholar
  66. Williams, K. T. (2007). Expressive Vocabulary Test (2nd ed.). Bloomington: Pearson.Google Scholar
  67. Wlodarska, I. (2009). t(10; 12)(q24; p13). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 13(9), 673–675.Google Scholar
  68. Yip, B. H. K., Bai, D., Mahjani, B., Klei, L., Pawitan, Y., Hultman, C. M., et al. (2017). Heritable variation, with little or no maternal effect, accounts for recurrence risk to autism spectrum disorder in Sweden. Biological Psychiatry.  https://doi.org/10.1016/j.biopsych.2017.09.007.
  69. Ziats, M. N., & Rennert, O. M. (2016). The evolving diagnostic and genetic landscapes of autism spectrum disorder. Frontiers in Genetics, 7, 65.CrossRefGoogle Scholar
  70. Zwaigenbaum, L., Bauman, M. L., Choueiri, R., Kasari, C., Carter, A., Granpeesheh, D., et al. (2015). Early intervention for children with autism spectrum disorder under 3 years of age: Recommendations for practice and research. Pediatrics, 136(Supplement 1), S60–S81.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Daryaneh Badaly
    • 1
    Email author
  • Kimberley P. Heinrich
    • 2
  • Anna Davis
    • 3
  • Angela M. Fish
    • 2
  • Mohammad Ghaziuddin
    • 2
  1. 1.Learning and Development CenterChild Mind InstituteNew YorkUSA
  2. 2.Department of PsychiatryUniversity of MichiganAnn ArborUSA
  3. 3.Department of Speech and Language PathologyUniversity of MichiganAnn ArborUSA

Personalised recommendations