A Significant Factor in Autism: Methyl Mercury Induced Oxidative Stress in Genetically Susceptible Individuals

  • Kerry E. Leslie
  • Susan M. KogerEmail author


The dramatic increase in prevalence rates of Autism Spectrum Disorders (ASDs) over recent decades likely reflects the influence of multiple factors. In the current paper, it is argued ASDs can result from an interaction between genetic susceptibilities and environmental exposures. Specifically, we hypothesize that fetal or infantile exposure to methyl mercury containing pollution by individuals with biologically inhibited antioxidant functions contributes to development of autism. Correlational data reveal that ASD rates are higher in areas of greater pollution levels, and autistic individuals exhibit biological evidence of mercury toxicity. Further, oxidative stress and decreased antioxidant activities are manifested in individuals with ASDs, specifically autism. Taken together, available evidence supports a methyl mercury-induced oxidative stress model of the disorders for at least some sufferers. Consequently, legislative efforts should focus on preventing exposures to methyl mercury and other toxicants that can adversely impact neurodevelopment.


Autism Toxic exposures Mercury Oxidative stress Genetic predisposition 


  1. Akyol, O., Kerken, H., Uz, E., Fadillioglu, E., Unal, S., Sogut, S., et al. (2002). The indices of endogenous oxidative and antioxidative processes in plasma from schizophrenic patients: the possible role of oxidant/antioxidant imbalance. Progress in Neuropsychopharmacology & Biological Psychiatry, 26, 995–1005. doi: 17544,35400010489459.0250.CrossRefGoogle Scholar
  2. Bostantjopoulou, S., Kyriazis, G., Katsarou, Z., Kiosseoglou, G., Kazis, A., & Mentenopoulos, G. (1997). Superoxide dismutase activity in early and advanced Parkinson’s disease. Functional Neurology, 12, 63–68. doi: 22082,35400006564067.0020.PubMedGoogle Scholar
  3. Burbacher, T. M., Shen, D. D., Liberato, N., Grant, K. S., Cernichiari, E., & Clarkson, T. (2005). Comparison of blood and brain mercury levels in infant monkeys exposed to methylmercury or vaccines containing thimerosal. Environmental Heath Perspectives, 113, 1015–1021. doi: 10.1289/ehp.7712.CrossRefGoogle Scholar
  4. Chauhan, A., Chauhan, V., Brown, W. T., & Cohen, I. (2004). Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin—the antioxidant proteins. Life Sciences, 75, 2539–2549. doi: 10.1016/j.lfs.2004.04.038.PubMedCrossRefGoogle Scholar
  5. Chez, M. G., Buchanan, C. P., Aimonovitch, M. C., Becker, M., Schaefer, K., Black, C., et al. (2002). Double-blind, placebo-controlled study of L-carnosine supplementation in children with autism spectrum disorders. Journal of Child Neurology, 17, 833–837. doi: 10.1177/08830738020170111501.PubMedCrossRefGoogle Scholar
  6. Christen, Y. (2000). Oxidative stress and Alzheimer’s disease. American Journal of Clinical Nutrition, 71, 621S–629S. Retrieved from
  7. Costa, L. G., & Giordano, G. (2007). Oxidative stress as a potential mechanism for developmental neurotoxicity of polybrominated diphenylether (PBDE) flame retardants. Neurotoxicology, 28, 1047–1067. doi: 10.1016/j.neuro.2007.08.007.PubMedCrossRefGoogle Scholar
  8. Croen, L. A., Grether, J. K., Hoogstrate, J., & Selvin, S. (2002). The changing prevalence of autism in California. Journal of Autism and Developmental Disorders, 32, 207–215. doi: 10.1023/A:1015453830880.PubMedCrossRefGoogle Scholar
  9. DeSoto, M. C. (2009). Ockham’s razor and autism: the case for developmental neurotoxins contributions to a disease of neurodevelopment. Neurotoxicology, 30, 331–337. doi: 10.1016/j.neuro.2009.03.003.PubMedCrossRefGoogle Scholar
  10. Geier, D. A., & Geier, M. R. (2006). A prospective assessment of porphyrins in autistic disorders: a potential marker of heavy metal exposure. Neurotoxicity Research, 10, 57–64. doi: 10.1007/BF03033334.PubMedCrossRefGoogle Scholar
  11. Geier, D. A., & Geier, M. R. (2007). A prospective study of mercury toxicity biomarkers in autistic spectrum disorders. Journal of Toxicology and Environmental Health, 70, 1723–1730. doi: 10.1080/15287390701457712.PubMedCrossRefGoogle Scholar
  12. Geier, D. A., Kern, J. K., Garver, C. R., Adams, J. B., Audhya, T., Nataf, R., et al. (2009). Biomarkers of environmental toxicity and susceptibility in autism. Journal of the Neurological Sciences, 280, 101–108. doi: 10.1016/j.jns.2008.08.021.PubMedCrossRefGoogle Scholar
  13. Grandjean, P., & Landrigan, P. J. (2006). Developmental neurotoxicity of industrial chemicals. Lancet, 368, 2167–2178. doi: 10.1016/S0140-6736(06)69665-7.PubMedCrossRefGoogle Scholar
  14. Guzzi, G., & La Porta, C. (2007). Molecular mechanics triggered by mercury. Toxicology, 244, 1–12.PubMedCrossRefGoogle Scholar
  15. Herbert, M. R., Russo, J. P., Yang, S., Roohi, J., Blaxill, M., Kahler, S. G., et al. (2006). Autism and environmental genomics. Neurotoxicology, 27, 671–684. doi: 10.1016/j.neuro.2006.03.017.PubMedCrossRefGoogle Scholar
  16. Herken, H., Uz, E., Ozyurt, H., Sogurt, S., Virit, O., & Akyol, O. (2001). Evidence that the activities of erythrocyte free radical scavenging enzymes and the products of lipid peroxidation are increased in different forms of schizophrenia. Molecular Psychiatry, 6, 66–73. Retrieved from
  17. Hertz-Picciotto, I., & Delwiche, L. (2009). The rise of autism and the role of age at diagnosis. Epidemiology, 20, 84–90. doi: 10.1097/EDE.0b013e3181902d15.PubMedCrossRefGoogle Scholar
  18. Holmes, A. S., Blaxill, M. F., & Haley, B. E. (2003). Reduced levels of mercury in first baby haircuts of autistic children. International Journal of Toxicology, 22, 277–285. doi: 10.1080/10915810390220054.PubMedCrossRefGoogle Scholar
  19. James, S. J., Melnyk, S., Fuchs, G., Reid, T., Jernigan, S., Pavliv, O., et al. (2009). Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism. The American Journal of Clinical Nutrition, 89, 425–430. doi: 10.3945/ajcn.2008.26615.PubMedCrossRefGoogle Scholar
  20. Kannan, K., & Jain, S. K. (2000). Oxidative stress and apoptosis. Pathophysiology, 7, 153–163. doi: 10.1016/S0928-4680(00)00053-5.PubMedCrossRefGoogle Scholar
  21. Kern, J. K., & Jones, A. M. (2006). Evidence of toxicity, oxidative stress, and neuronal insult in autism. Journal of Toxicity and Environmental Health, Part B, 9, 485–499. doi: 10.1080/10937400600882079.CrossRefGoogle Scholar
  22. Kielinen, M., Linna, S. L., & Moilanen, I. (2000). Autism in northern Finland. European Child & Adolescent Psychiatry, 9, 162–167. doi: 10.1007/s007870070039.CrossRefGoogle Scholar
  23. King, M., & Bearman, P. (2009). Diagnostic change and the increased prevalence of autism. International Journal of Epidemiology, 38, 1224–1234. doi: 10.1093/ije/dyp261.PubMedCrossRefGoogle Scholar
  24. Koger, S. M., Schettler, T., & Weiss, B. (2005). Environmental toxicants and developmental disabilities: a challenge for psychologists. The American Psychologist, 60, 243–255.PubMedCrossRefGoogle Scholar
  25. Konstantareas, M. M., & Hewitt, T. (2001). Autistic disorder and schizophrenia: diagnostic overlap. Journal of Autism and Developmental Disorders, 31, 19–28. doi: 10.1023/A:1005605528309.PubMedCrossRefGoogle Scholar
  26. Landrigan, P. J., Kimmel, C. A., Correa, A., & Eskenazi, B. (2004). Children’s health and the environment: public health issues and challenges for risk assessment. Environmental Health Perspectives, 112(2), 257–265. doi: 10.1289/ehp.6115.PubMedCrossRefGoogle Scholar
  27. Madsen, K. M., Lauritsen, M. B., Pedersen, C. B., Thorsen, P., Plesner, A., Andersen, P. H., et al. (2003). Thimerosal and the occurrence of autism: negative ecological evidence from Danish population-based data. Official Journal of the American Academy of Pediatrics, 112, 604–606. doi: 10.1542/peds.112.3.604.Google Scholar
  28. Melke, J., Goubran Botros, H., Chaste, P., Betancur, C., Nygren, G., Anckarsäter, H., et al. (2008). Abnormal melatonin synthesis in autism spectrum disorders. Molecular Psychiatry, 13, 90–98. doi: 10.1038/ Scholar
  29. Millodot, M. (2009). Oxidative stress. Author. In Dictionary of optometry and visual science (7th ed.). Location: Butterworth-Heinemann.Google Scholar
  30. Ming, X., Stein, T. P., Brimacombe, M., Johnson, W. G., Lambert, G. H., & Wagner, G. C. (2005). Increased excretion of lipid peroxidation biomarker in autism. Prostaglandins Leukotrienes and Essential Fatty Acids, 73, 379–384. doi: 10.1016/j.plefa.2005.06.002.CrossRefGoogle Scholar
  31. Nataf, R., Skorupka, C., Amet, L., Lam, A., Springbett, A., & Lathe, R. (2006). Porphyrinuria in childhood autistic disorder: implications for environmental toxicity. Toxicology and Applied Pharmacology, 214, 99–108. doi: 10.1016/j.taap.2006.04.008.PubMedCrossRefGoogle Scholar
  32. Newschaffer, C. J., Falb, M. D., & Gurney, J. G. (2005). National autism prevalence trends from United States special education data. Pediatrics, 115, 277–282. doi: 10.1542/peds.2004-1958.CrossRefGoogle Scholar
  33. Palmer, R. F., Blanchard, S., Stein, Z., Mandell, D., & Miller, C. (2006). Environmental mercury release, special education rates, and autism disorder: an ecological study of Texas. Health & Place, 12, 203–209. doi: 10.1016/j.healthplace.2004.11.005.CrossRefGoogle Scholar
  34. Palmer, R. F., Blanchard, S., & Wood, R. (2009). Proximity to point sources of environmental mercury release as a predictor of autism prevalence. Health & Place, 15, 18–24. doi: 10.1016/j.healthplace.2008.02.001.CrossRefGoogle Scholar
  35. Rice, C. (2006). Prevalence of autism spectrum disorders. Retrieved from Centers of Disease Control and Prevention, National Center on Birth Defects and Developmental Disabilities website:
  36. Sajdel-Sulkowska, E. M., Lipinski, B., Windom, H., Audhya, T., & McGinnis, W. (2008). Oxidative stress in autism: elevated cerebellar 3-nitrotyrosine levels. American Journal of Biochemestry and Biotechnology, 4, 73–84. Retrieved from
  37. Schechter, R., & Grether, J. K. (2008). Continuing increases in autism reported to California’s developmental services system. Archives of General Psychiatry, 65, 19-24. Retrieved from
  38. Söğüt, S., Zoroglu, S. S., Ozyurt, H., Yilmaz, H. R., Ozurgurlu, F., Sivasli, E., et al. (2003). Changes in nitric oxide levels and antioxidant enzyme activities may have a role in the pathophysiological mechanisms involved in autism. Clinica Chimica Acta, 331, 111–117. doi: 10.1016/S0009-8981(03)00119-0.CrossRefGoogle Scholar
  39. Torsdottir, G., Kristinsson, J., Sveinbjornsdoltir, S., Snaedal, J., & Johannesson, T. (1999). Copper, ceruloplasmin, superoxide dismutase and iron parameters in Parkinson’s disease. Pharmacology & Toxicology, 85, 239–243. doi: 10.1111/j.1600-0773.1999.tb02015.x.CrossRefGoogle Scholar
  40. U.S. Environmental Protection Agency (2009). Toxic air pollutants: about air toxics. Retrieved November 29, 2010, from
  41. Venkataraman, P., Krishnamoorthy, G., Vengatesh, G., Srinivasan, N., Aruldhas, M. M., & Arunakaran, J. (2008). Protective role of melatonin on PCB (Aroclor 1254) induced oxidative stress and changes in acetylcholine esterase and membrane bound ATPases in cerebellum, cerebral cortex and hippocampus of adult rat brain. International Journal of Developmental Neuroscience, 26, 585–591. doi: 10.1016/j.ijdevneu.2008.05.002.PubMedCrossRefGoogle Scholar
  42. Weiss, L. A., Shen, Y., Korn, J. M., Arking, D. E., Miller, D. T., Fossdal, R., et al. (2008). Association between microdeletion and microduplication at 16p11.2 and autism. The New England Journal of Medicine, 358, 667–675. doi: 10.1056/NEJMoa075974.PubMedCrossRefGoogle Scholar
  43. Willam, A. (2008). Autism statistics information. Retrieved December 5, 2009, from, November 7.
  44. Windham, G. C., Zhang, L., Gunier, R., Croen, L. A., & Grether, J. K. (2006). Autism spectrum disorders in relation to distribution of hazardous air pollutants in the San Francisco bay area. Environmental Health Perspectives, 114, 1438–1444. doi: 10.1289/ehp.9120.PubMedCrossRefGoogle Scholar
  45. Wing, L., & Potter, D. (2002). The epidemiology of autistic spectrum disorders: is the prevalence rising. Mental Retardation and Developmental Disabilities Research Reviews, 8, 151–161. doi: 10.1002/mrdd.10029.PubMedCrossRefGoogle Scholar
  46. Woods, J. S., Bowers, M. A., & Davis, H. A. (1991). Urinary porphyrin profiles as biomarkers of trace metal exposure and toxicity: studies on urinary porphyrin excretion patterns in rats during prolonged exposure to methyl mercury. Journal of Toxicology and Applied Pharmachology, 110, 464–76.CrossRefGoogle Scholar
  47. Zoroglu, S. S., Armutcu, F., Ozen, S., Gurel, A., Sivasli, E., Ozer, Y., et al. (2004). Increased oxidative stress and altered activities of erythrocyte free radical scavenging enzymes in autism. European Archives of Psychiatry and Clinical Neuroscience, 254, 143–147. doi: 10.1007/s00406-004-0456-7.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PsychologyWillamette UniversitySalemUSA

Personalised recommendations