Association Between Hospital Anxiety Depression Scale and Autonomic Recovery Following Exercise
Abstract
The hospital anxiety depression scale (HADS) is a benchmark used to investigate possible and probable cases of psychosomatic illness. Its affiliation with autonomic recovery after exercise is unclear and, as a technique applied to evaluate cardiovascular risk. We assessed a possible link between HADS and autonomic recovery after exercise. We studied healthy subjects split into two groups: Low HADS (n = 20) and High HADS (n = 21). Subjects consented to moderate aerobic exercise on a treadmill at 60% to 65% of the maximum heart rate (HR) for 30 min. We studied HR variability (HRV) before and during 30 min after exercise. Subjects with higher HADS values presented delayed recovery of HR and root-mean square of differences between adjacent normal RR intervals (RMSSD) after submaximal exercise. RMSSD during recovery from exercise had a significant association with HADS. In summary, subjects with higher HADS presented slower vagal recovery following exercise.
Keywords
Anxiety Autonomic nervous system Depression Cardiovascular system ExerciseNotes
Acknowledgements
This study received financial support from Foundation of Support to Research from Sao Paulo State (Process 2016/02994-1) and the National Council for Scientific and Technological Development (CNPq), which is linked to the Ministry of Science, Technology, Innovations and Communications.
Funding
This study was funded by CNPq (Conselho Nacional de Pesquisas - Grant Number 301784/2014-0) and Foundation of Support to Research from Sao Paulo State (Grant Number 2016/02994-1).
Compliance with Ethical Standards
Conflict of interest
Authors Milana D. R. Santana, David M. Garner, Yasmim M. de Moraes, Luana B. Mangueira, Guilherme C. Alcantara, José R. A. da Silva, Rodrigo D. Raimundo, Fernando R. Oliveira and Vitor E. Valenti declare that they have no conflict of interest.
Human and Animal Rights and Informed Consent
All methods were approved by the Research Ethics Committee in Research from Faculdade de Juazeiro do Norte (Number 2.244.700). The experimental protocols were performed in accordance with the 466/2012 resolution of the National Health Council of 12/12/2012. Informed consent was obtained from all participants and they signed a confidential consent letter.
References
- Al Bannay, R., Böhm, M., & Husain, A. (2013). Heart rate differentiates urgency and emergency in hypertensive crisis. Clinical Research in Cardiology,102, 593–598.CrossRefGoogle Scholar
- Augeri, A. L., Tsongalis, G. J., Van Heest, J. L., Maresh, C. M., Thompson, P. D., & Pescatello, L. S. (2009). The endothelial nitric oxide synthase − 786 T > C polymorphism and the exercise-induced blood pressure and nitric oxide responses among men with elevated blood pressure. Atherosclerosis,204, e28–e34.PubMedCrossRefGoogle Scholar
- Bai, X., Li, J., Zhou, L., & Li, X. (2009). Influence of the menstrual cycle on nonlinear properties of heart rate variability in young women. American Journal of Physiology-Heart and Circulatory Physiology,297, H765–H774.PubMedCrossRefGoogle Scholar
- Barth, J., Schumacher, M., & Herrmann-Lingen, C. (2004). Depression as a risk factor for mortality in patients with coronary heart disease: A meta-analysis. Psychosomatic Medicine,66, 802–813.PubMedCrossRefGoogle Scholar
- Blanchard, B. E., Tsongalis, G. J., Guidry, M. A., LaBelle, L. A., Poulin, M., Taylor, A. L., … Pescatello, L. S. (2006). RAAS polymorphisms alter the acute blood pressure response to aerobic exercise among men with hypertension. European Journal of Applied Physiology, 97, 26–33.PubMedCrossRefGoogle Scholar
- Bruneau, M. L., Jr., Johnson, B. T., Huedo-Medina, T. B., Larson, K. A., Ash, G. I., & Pescatello, L. S. (2016). The blood pressure response to acute and chronic aerobic exercise: A meta-analysis of candidate gene association studies. Journal of Science and Medicine in Sport,19, 424–431.PubMedCrossRefGoogle Scholar
- Camarda, S. R., Tebexreni, A. S., Páfaro, C. N., Sasai, F. B., Tambeiro, V. L., & Juliano, Y. (2008). Comparison of maximal heart rate using the prediction equations proposed by Karvonen and Tanaka. Arquivos Brasileiros de Cardiologia,91, 311–314.PubMedCrossRefGoogle Scholar
- Camm, A. J., Malik, M., Bigger, J. T., Breithardt, G., Cerutti, S., & Cohen, R. J. (1996). Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation,93, 1043–1065.CrossRefGoogle Scholar
- Chen, S. C., Huang, J. C., Tsai, Y. C., Hsiu-Chin Mai, R. N., Jui-Hsin Chen, R. N., Kuo, P. L., … Chen, H. C. (2016). Heart rate variability change before and after hemodialysis is associated with overall and cardiovascular mortality in hemodialysis. Scientific Reports, 6, 20597.Google Scholar
- Cosco, T. D., Doyle, F., Ward, M., & McGee, H. (2012). Latent structure of the Hospital Anxiety and Depression Scale: A 10-year systematic review. Journal of Psychosomatic Research,72, 180–184.PubMedCrossRefGoogle Scholar
- de Carvalho, T. D., Wajnsztejn, R., de Abreu, L. C., Marques Vanderlei, L. C., Godoy, M. F., Adami, F., … Ferreira, C. (2014). Analysis of cardiac autonomic modulation of children with attention deficit hyperactivity disorder. Neuropsychiatric Disease and Treatment, 10, 613–618.Google Scholar
- Doyle, F., Conroy, R., McGee, H., & Delaney, M. (2010). Depressive symptoms in persons with acute coronary syndrome: Specific symptom scales and prognosis. Journal of Psychosomatic Research,68, 121–130.CrossRefGoogle Scholar
- Doyle, F., McGee, H. M., La, De, Harpe, D., Shelley, E., & Conroy, R. (2006). The Hospital Anxiety and Depression Scale depression subscale, but not the Beck Depression Inventory-Fast Scale, identifies patients with acute coronary syndrome at elevated risk of 1-year mortality. Journal of Psychosomatic Research,60, 461–467.PubMedCrossRefGoogle Scholar
- Fangauf, S. V., Meyer, T., Albus, C., Binder, L., Deter, H. C., Ladwig, K. H., … SPIRR-CAD Group. (2019). Longitudinal relationship between B-type natriuretic peptide and anxiety in coronary heart disease patients with depression. Journal of Psychosomatic Research, 123, 109728.PubMedCrossRefGoogle Scholar
- Fritz, C. O., Morris, P. E., & Richler, J. J. (2012). Effect size estimates: Current use, calculations, and interpretation. Journal of Experimental Psychology: General,141, 2–18.CrossRefGoogle Scholar
- Gibbons, R. J., Balady, G. J., Beasley, J. W., Bricker, J. T., Duvernoy, W. F., Froelicher, V. F., … Ryan, T. J. (1997). ACC/AHA guidelines for exercise testing. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Exercise Testing). Journal of the American College of Cardiology, 30, 260–311.Google Scholar
- Goessl, V. C., Curtiss, J. E., & Hofmann, S. G. (2017). The effect of heart rate variability biofeedback training on stress and anxiety: A meta-analysis. Psychological Medicine,47, 2578–2586.PubMedCrossRefGoogle Scholar
- Gonzaga, L. A., Vanderlei, L. C. M., Gomes, R. L., & Valenti, V. E. (2017). Caffeine affects autonomic control of heart rate and blood pressure recovery after aerobic exercise in young adults: A crossover study. Scientific Reports,7, 14091.PubMedPubMedCentralCrossRefGoogle Scholar
- Guinjoan, S. M., Vigo, D. E., Castro, M. N., Tateosian, N., Chuluyan, E., Costanzo, E., & Cardinali, D. P. (2004). Cardiac parasympathetic dysfunction related to depression in older adults with acute coronary syndrome. Journal of Psychosomatic Research, 56, 83–88.Google Scholar
- Hamilton, J. L., & Alloy, L. B. (2016). Atypical reactivity of heart rate variability to stress and depression across development: Systematic review of the literature and directions for future research. Clinical Psychology Review,50, 67–79.PubMedPubMedCentralCrossRefGoogle Scholar
- Hinz, A., Finck, C., Gómez, Y., Daig, I., Glaesmer, H., & Singer, S. (2014). Anxiety and depression in the general population in Colombia: Reference values of the Hospital Anxiety and Depression Scale (HADS). Social Psychiatry and Psychiatric Epidemiology,49, 41–49.PubMedCrossRefGoogle Scholar
- Imai, K., Sato, H., Hori, M., Kusuoka, H., Ozaki, H., Yokoyama, H., … Kamada, T. (1994). Vagally mediated heart rate recovery after exercise is accelerated in athletes but blunted in patients with chronic heart failure. Journal of the American College of Cardiology, 24, 1529–1535.PubMedCrossRefGoogle Scholar
- Janszky, I., Ahnve, S., Lundberg, I., & Hemmingsson, T. (2010). Early-onset depression, anxiety, and risk of subsequent coronary heart disease: 37-year follow-up of 49,321 young Swedish men. Journal of the American College of Cardiology,56, 31–37.PubMedCrossRefGoogle Scholar
- Kaufmann, T., Sütterlin, S., Schulz, S. M., & Vögele, C. (2011). ARTiiFACT: A tool for heart rate artifact processing and heart rate variability analysis. Behavior Research Methods,43, 1161–1170.PubMedCrossRefGoogle Scholar
- Kleiger, R. E., Miller, J. P., Bigger, J. T., Jr., & Moss, A. J. (1987). Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. American Journal of Cardiology,59, 256–262.PubMedCrossRefGoogle Scholar
- Kokkinos, P., Myers, J., Doumas, M., Faselis, C., Pittaras, A., Manolis, A., … Fletcher, R. (2012). Heart rate recovery, exercise capacity, and mortality risk in male veterans. European Journal of Preventive Cardiology, 19, 177–184.PubMedCrossRefGoogle Scholar
- Koopman, J. J., van Bodegom, D., Maan, A. C., Li, Z., Ziem, J. B., Westendorp, R. G., & Jukema, J. W. (2015). Heart rate variability, but not heart rate, is associated with handgrip strength and mortality in older Africans at very low cardiovascular risk: A population-based study. International Journal of Cardiology,187, 559–561.PubMedCrossRefGoogle Scholar
- Laukkanen, J. A., Willeit, P., Kurl, S., Mäkikallio, T. H., Savonen, K., Ronkainen, K., & Rauramaa, R. (2014). Elevated systolic blood pressure during recovery from exercise and the risk of sudden cardiac death. Journal of Hypertension,32, 659–666.PubMedCrossRefGoogle Scholar
- Martinez-Tellez, B., Sanchez-Delgado, G., Amaro-Gahete, F. J., Acosta, F. M., & Ruiz, J. R. (2019). Relationships between cardiorespiratory fitness/muscular strength and 18F-fluorodeoxyglucose uptake in brown adipose tissue after exposure to cold in young, sedentary adults. Scientific Reports,9, 11314.PubMedPubMedCentralCrossRefGoogle Scholar
- Myers, J., Buchanan, N., Walsh, D., Kraemer, M., McAuley, P., HamiltonWessler, M., & Froelicher, V. F. (1991). Comparison of the ramp versus standard exercise protocols. Journal of the American College of Cardiology,17, 1334–1342.PubMedCrossRefGoogle Scholar
- Nabi, H., Hall, M., Koskenvuo, M., Singh-Manoux, A., Oksanen, T., Suominen, S., … Vahtera, J. (2010). Psychological and somatic symptoms of anxiety and risk of coronary heart disease: The health and social support prospective cohort study. Biological Psychiatry, 67, 378–385.PubMedCrossRefGoogle Scholar
- Pardini, R., Matsudo, S. M. M., Matsudo, V. K. R., Araujo, T., Andrade, E., Braggion, G. F., … Raso, Y. (2001). Validation of the international questionnaire on the level of physical activity (IPAQ-version6): A pilot study in young Brazilian adults. Revista Brasileira de Ciencias e Movimento, 9, 45–51.Google Scholar
- Pearson, M. J., & Smart, N. A. (2018). Exercise therapy and autonomic function in heart failure patients: A systematic review and meta-analysis. Heart Failure Reviews,23, 91–108.CrossRefGoogle Scholar
- Peçanha, T., Silva-Júnior, N. D., & Forjaz, C. L. (2014). Heart rate recovery: Autonomic determinants, methods of assessment and association with mortality and cardiovascular diseases. Clinical Physiology and Functional Imaging,34, 327–339.PubMedCrossRefGoogle Scholar
- Qiu, S., Cai, X., Sun, Z., Li, L., Zuegel, M., Steinacker, J. M., & Schumann, U. (2017). Heart rate recovery and risk of cardiovascular events and all-cause mortality: A meta-analysis of prospective cohort studies. Journal of the American Heart Association. https://doi.org/10.1161/JAHA.117.005505.CrossRefPubMedPubMedCentralGoogle Scholar
- Raimundo, R. D., de Abreu, L. C., Adami, F., Vanderlei, F. M., de Carvalho, T. D., Moreno, I. L., … Sato, M. A. (2013). Heart rate variability in stroke patients submitted to an acute bout of aerobic exercise. Translational Stroke Research, 4, 488–499.PubMedCrossRefGoogle Scholar
- Rossi, D. M., Valenti, V. E., & Navega, M. T. (2011). Exercise training attenuates acute hyperalgesia in streptozotocin-induced diabetic female rats. Clinics,66, 1615–1619.PubMedPubMedCentralCrossRefGoogle Scholar
- Sadlonova, M., Meyer, T., Binder, L., Wachter, R., Edelmann, F., & Herrmann-Lingen, C. (2019). Higher plasma levels of CT-proAVP are linked to less anxiety in men but not women with cardiovascular risk factors: Results from the observational Diast-CHF study. Psychoneuroendocrinology,101, 272–277.PubMedCrossRefGoogle Scholar
- Silverman, A. L., Herzog, A. A., & Silverman, D. I. (2018). Hearts and minds: Stress, anxiety, and depression. Unsung risk factors for cardiovascular disease. Cardiology Reviews. https://doi.org/10.1097/crd.0000000000000228.CrossRefGoogle Scholar
- Stuckey, M. I., Tulppo, M. P., Kiviniemi, A. M., & Petrella, R. J. (2014). Heart rate variability and the metabolic syndrome: A systematic review of the literature. Diabetes Metabolic Research Review,30, 784–793.CrossRefGoogle Scholar
- Tarvainen, M. P., Niskanen, J. A., Lipponen, P. O., Ranta-aho, & Karjalainen, P. A. (2008). Kubios HRV: A software for advanced heart rate variability analysis. In J. V. Sloten, P. Verdonck, M. Nyssen, & J. Haueisen (Eds.), 4th European conference of the International Federation for Medical and Biological Engineering (pp. 1022–1025). Berlin: Springer.Google Scholar
- Tully, P. J., Cosh, S. M., & Baune, B. T. (2013). A review of the affects of worry and generalized anxiety disorder upon cardiovascular health and coronary heart disease. Psychology, Health & Medicine,18, 627–644.CrossRefGoogle Scholar
- Valenti, V. E., Guida, H. L., Frizzo, A. C., Cardoso, A. C., Vanderlei, L. C., & Abreu, L. C. (2012). Auditory stimulation and cardiac autonomic regulation. Clinics,67, 955–958.PubMedCentralCrossRefPubMedGoogle Scholar
- Vanderlei, L. C., Pastre, C. M., Hoshi, R. A., Carvalho, T. D., & Godoy, M. F. (2009). Basic notions of heart rate variability and its clinical applicability. Brazilian Journal of Cardiovascular Surgery,24, 205–217.CrossRefGoogle Scholar
- von Känel, R., Saner, H., Kohls, S., Barth, J., Znoj, H., Saner, G., & Schmid, J. P. (2009). Relation of heart rate recovery to psychological distress and quality of life in patients with chronic heart failure. European Journal of Cardiovascular Prevention and Rehabilitation,16, 645–650.CrossRefGoogle Scholar
- Watanabe, J., Thamilarasan, M., Blackstone, E. H., Thomas, J. D., & Lauer, M. S. (2001). Heart rate recovery immediately after treadmill exercise and left ventricular systolic dysfunction as predictors of mortality: The case of stress echocardiography. Circulation,104, 1911–1916.CrossRefGoogle Scholar
- Wegner, M., Helmich, I., Machado, S., Nardi, A. E., Arias-Carrion, O., & Budde, H. (2014). Effects of exercise on anxiety and depression disorders: Review of meta-analyses and neurobiological mechanisms. CNS & Neurological Disorders: Drug Targets,13, 1002–1014.CrossRefGoogle Scholar
- Zigmond, A., & Snaith, R. (1983). The Hospital Anxiety and Depression Scale. Acta Psychiatrica Scandinavica,67, 361–370.PubMedCrossRefGoogle Scholar