Stress, Coping and Cognitive Deficits in Women After Surgery for Breast Cancer

Article

Abstract

Research on neuropsychological difficulties among cancer patients has focused on chemotherapy as a primary cause, yet several studies have now shown that some patients evidence cognitive weaknesses prior to chemotherapy. As an alternative to the ‘chemo–brain’ theory, this study examined the hypothesis that stress and coping style may be associated with observed neuropsychological difficulties among female cancer patients. Thirty-six women completed neuropsychological testing and psychological questionnaires following surgery for breast cancer and prior to any subsequent treatments. Twenty-seven percent of participants evidenced deficits on at least one measure of verbal fluency, and 14% of participants were impaired on at least one memory measure. Self-reported stress was correlated with deficits in memory, verbal fluency, and attention. Subsequent mediational analyses indicated that use of passive coping styles may underlie this relationship between stress and neuropsychological deficits. These findings highlight the potential relevance of psychological mechanisms, such as coping style, in cancer patients’ experience of neuropsychological deficits.

Keywords

Breast cancer Neuropsychology Memory Executive function Coping Stress Self-regulation 

References

  1. Ahles, T. A., & Saykin, A. (2001). Cognitive effects of standard-dose chemotherapy in patients with cancer. Cancer Investigation, 19, 812–820.PubMedCrossRefGoogle Scholar
  2. Baker, F., Denniston, M., Zabora, J., Polland, A., & Dudley, W. N. (2002). A POMS short form for cancer patients: Psychometric and structural evaluation. Psychooncology, 11, 273–281.PubMedCrossRefGoogle Scholar
  3. Baron, R., & Kenny, D. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173–1182.PubMedCrossRefGoogle Scholar
  4. Baumeister, R. F., Braslavsky, E., Muraven, M., & Tice, D. M. (1998). Ego-depletion: Is the active self a limited resource? Journal of Personality and Social Psychology, 74, 1252–1265.PubMedCrossRefGoogle Scholar
  5. Baumeister, R. F., & Heatherton, T. F. (1996). Self-regulation failure: An overview. Psychological Inquiry, 7, 1–15.CrossRefGoogle Scholar
  6. Benton, A. L., & deS Hamsher, K. (1989). Multilingual Aphasia Examination. Iowa City, IA: AJA Associates.Google Scholar
  7. Binder, L. M., Iverson, G. L., & Brooks, B. L. (2009). To err is human: “Abnormal” neuropsychological scores and variability are common in healthy adults. Archives of Clinical Neuropsychology, 24, 31–46.PubMedCrossRefGoogle Scholar
  8. Buchanan, T. W., & Tranel, D. (2008). Stress and emotional memory retrieval: Effects of sex and cortisol response. Neurobiology of Learning and Memory, 89, 134–141.PubMedCrossRefGoogle Scholar
  9. Carlsson, M., Arman, M., Backman, M., & Hamrin, E. (2005). Coping in women with breast cancer in complementary and conventional care over 5 years measured by the mental adjustment to cancer scale. Journal of Alternative and Complementary Medicine, 11, 441–447.CrossRefGoogle Scholar
  10. Carver, C. S. (1997). You want to measure coping but your protocol’s too long: Consider the brief COPE. International Journal of Behavioral Medicine, 4, 92–100.PubMedCrossRefGoogle Scholar
  11. Carver, C. S., Pozo, C., Harris, S. D., Noriega, V., Scheier, M. F., Robinson, D. S., et al. (1993). How coping mediates the effect of optimism on distress: A study of women with early stage breast cancer. Journal of Personality and Social Psychology, 65, 375–390.PubMedCrossRefGoogle Scholar
  12. Castellon, S. A., Ganz, P. A., Bower, J. E., Petersen, L., Abraham, L., & Greendale, G. A. (2004). Neurocognitive performance in breast cancer survivors exposed to adjuvant chemotherapy and tamoxifen. Journal of Clinical and Experimental Neuropsychology, 26, 955–969.PubMedCrossRefGoogle Scholar
  13. Cimprich, B. (1992). Attentional fatigue following breast cancer surgery. Research in Nursing and Health, 15, 199–207.PubMedCrossRefGoogle Scholar
  14. Cimprich, B., Reuter-Lorenz, P., Nelson, J., Clark, P. M., Therrien, B., Normolle, D., et al. (2010). Prechemotherapy alterations in brain function in women with breast cancer. Journal of Clinical and Experimental Neuropsychology, 32, 324–331.PubMedCrossRefGoogle Scholar
  15. Cimprich, B., & Ronis, D. L. (2003). An environmental intervention to restore attention in women with newly diagnosed breast cancer. Cancer Nursing, 26, 284–292.PubMedCrossRefGoogle Scholar
  16. Classen, C., Koopman, C., Angell, K., & Spiegel, D. (1996). Coping styles associated with psychological adjustment to advanced breast cancer. Health Psychology, 15, 434–437.PubMedCrossRefGoogle Scholar
  17. Compas, B. E., Beckjord, E., Agocha, B., Sherman, M. L., Langrock, L., Gorssman, C. I., et al. (2006). Measurement of coping and stress response in women with breast cancer. Psychooncology, 15, 1038–1054.PubMedCrossRefGoogle Scholar
  18. Costa-Requena, G., & Gil, F. (2009). The Mental Adjustment to Cancer Scale: A psychometric analysis in Spanish cancer patients. Psychooncology, 18, 984–991.PubMedCrossRefGoogle Scholar
  19. Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130, 355–361.PubMedCrossRefGoogle Scholar
  20. Ehlert, U., Patalla, U., Kirschbaum, C., Piedmont, E., & Hellhammer, D. H. (1990). Postpartum blues: Salivary cortisol and psychological factors. Journal of Psychosomatic Research, 34, 319–325.PubMedCrossRefGoogle Scholar
  21. Emanuel, E. J., Wendler, D., & Grady, C. (2000). What makes clinical research ethical? JAMA, 283, 2701–2711.PubMedCrossRefGoogle Scholar
  22. Epping-Jordan, J. E., Compas, B. E., Osowiecki, D. M., Oppedisano, G., Gerhardt, C., Primo, K., et al. (1999). Psychological adjustment to breast cancer: Processes of emotional distress. Health Psychology, 18, 315–326.PubMedCrossRefGoogle Scholar
  23. Falleti, M. G., Sanfilippo, A., Maruff, P., Weih, L., & Phillips, K. (2005). The nature and severity of cognitive impairment associated with adjuvant chemotherapy in women with breast cancer: A meta-analysis of the current literature. Brain and Cognition, 59, 60–70.PubMedCrossRefGoogle Scholar
  24. Gould, R. V., Brown, S. L., & Bramwell, R. (2010). Psychological adjustment to gynaecological cancer: Patients’ illness representations, coping strategies and mood disturbance. Psychology and Health, 25, 633–646.PubMedCrossRefGoogle Scholar
  25. Gyurak, A., Goodkind, M. S., Madan, A., Kramer, J. H., Miller, B. L., & Levenson, R. W. (2009). Do tests of executive functioning predict ability to downregulate emotions spontaneously and when instructed to suppress? Cognitive, Affective and Behavioral Neuroscience, 9, 144–152.PubMedCrossRefGoogle Scholar
  26. Hack, T. F., & Degner, L. F. (2004). Coping responses following breast cancer diagnosis predict psychological adjustment three years later. Psychooncology, 13, 235–247.PubMedCrossRefGoogle Scholar
  27. Hermelink, K., Untch, M., Lux, M. P., Kreienberg, R., Bech, T., Bauerfeind, I., et al. (2007). Cognitive function during neoadjuvant chemotherapy for breast cancer: Results of a prospective, multicenter, longitudinal study. Cancer, 109, 1905–1913.PubMedCrossRefGoogle Scholar
  28. Het, S., Ramlow, G., & Wolf, O. T. (2005). A meta-analytic review of the effects of acute cortisol administration on human memory. Psychoneuroendocrinology, 30, 771–784.PubMedCrossRefGoogle Scholar
  29. Kaasinen, V., Nurmi, E., Bergman, J., Eskola, O., Solin, O., Sonninen, P., et al. (2001). Personality traits and brain dopaminergic function in Parkinson’s disease. Proceedings of the National Academy of Science, 98, 13272–13277.CrossRefGoogle Scholar
  30. Kershaw, T., Northouse, L., Kritpracha, C., Schafenacker, A., & Mood, D. (2004). Coping strategies and quality of life in women with advanced breast cancer and their family caregivers. Psychology and Health, 19, 139–155.CrossRefGoogle Scholar
  31. Kohno, Y., Maruyama, M., Matsuoka, Y., Matsushita, T., Koeda, M., & Matsushima, E. (2010). Relationship of psychological characteristics and self-efficacy in gastrointestinal cancer survivors. Psychooncology, 19, 71–76.PubMedCrossRefGoogle Scholar
  32. Kuhlman, S., Piel, M., & Wolf, O. T. (2005). Impaired memory retrieval after psychosocial stress in healthy young men. Journal of Neuroscience, 25, 2977–2982.CrossRefGoogle Scholar
  33. Lee, B. K., Glass, T. A., McAtee, M. J., Wand, G. S., Bandeen-Roche, K., Bolla, K. I., et al. (2007). Associations of salivary cortisol with cognitive function in the Baltimore memory study. Archives of General Psychiatry, 64, 810–818.PubMedCrossRefGoogle Scholar
  34. Luecken, L. J., & Compas, B. E. (2002). Stress, coping, and immune function in breast cancer. Annals of Behavioral Medicine, 24, 336–344.PubMedCrossRefGoogle Scholar
  35. Lupien, S. J., Lecours, A. R., Schwartz, G., Sharma, S., Hauger, R. L., Meaney, M. J., et al. (1995). Longitudinal study of basal cortisol levels in healthy elderly subjects: Evidence for subgroups. Neurobiology of Aging, 17, 95–105.CrossRefGoogle Scholar
  36. MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7, 83–104.PubMedCrossRefGoogle Scholar
  37. Manyande, A., Berg, S., Gettins, D., Stanford, S. C., Mazhero, S., Marks, D. F., et al. (1995). Preoperative rehearsal of active coping imagery influences subjective and hormonal responses to abdominal surgery. Psychosomatic Medicine, 57, 177–182.PubMedGoogle Scholar
  38. McCaul, K., Sandgren, A. K., King, B., O’Donnell, S., Branstetter, A., & Foreman, G. (1999). Coping and adjustment to breast cancer. Psychooncology, 8, 230–236.PubMedCrossRefGoogle Scholar
  39. McCormick, C. M., Lewis, E., Somley, B., & Kahan, T. A. (2007). Individual differences in cortisol levels and performance on a test of executive function in men and women. Physiology and Behavior, 91, 87–94.PubMedCrossRefGoogle Scholar
  40. McGarvey, E. L., Leon-Verdin, M., Baum, L. D., Bloomfield, K., Brenin, D. R., Koopman, C., et al. (2010). An evaluation of a computer-imaging program to prepare women for chemotherapy-related alopecia. Psychooncology, 19, 756–766.PubMedGoogle Scholar
  41. Michelson, D., Licinio, J., & Bold, P. W. (1995). Mediation of the stress response by the hypothalamic–pituitary–adrenal axis. In M. J. Friedman, D. S. Charney, & A. Y. Deutch (Eds.), Neurobiological and clinical consequences of stress (pp. 225–238). Philadelphia, PA: Lippincott-Raven.Google Scholar
  42. Muraven, M., & Baumeister, R. F. (2000). Self-regulation and depletion of limited resources: Does self-control resemble a muscle? Psychological Bulletin, 126, 247–259.PubMedCrossRefGoogle Scholar
  43. Muraven, M., Tice, D. M., & Baumeister, R. F. (1998). Self-control as a limited resource: Regulatory depletion patterns. Journal of Personality and Social Psychology, 74, 774–789.PubMedCrossRefGoogle Scholar
  44. Mystakidou, K., Parpa, E., Tsilika, E., Gennatas, C., Galanos, A., & Vlahos, L. (2009). How is sleep quality affected by the psychological and symptom distress of advanced cancer patients? Palliative Medicine, 23, 46–53.PubMedCrossRefGoogle Scholar
  45. Pallant, J. (2010). SPSS: Survival manual (4th ed.). New York, NY: McGraw Hill.Google Scholar
  46. Radloff, L. S. (1977). The CES-D scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1, 385–401.CrossRefGoogle Scholar
  47. Reid-Arndt, S. A. (2006). The potential for neuropsychology to inform functional outcomes research with breast cancer survivors. NeuroRehabilitation, 21, 51–64.PubMedGoogle Scholar
  48. Reid-Arndt, S. A., Hsieh, C., & Perry, M. C. (2010). Neuropsychological functioning and quality of life during the first year after completing chemotherapy for breast cancer. Psychooncology, 19, 535–544.PubMedCrossRefGoogle Scholar
  49. Ristvedt, S. L., & Trinkaus, K. M. (2009). Trait anxiety as an independent predictor of poor health-related quality of life and post-traumatic stress symptoms in rectal cancer. British Journal of Health Psychology, 14, 701–715.PubMedCrossRefGoogle Scholar
  50. Sapolsky, R. M., Krey, L. C., & McEwen, B. S. (1986). The neuroendocrinology of stress and aging: The glucocorticoid cascade hypothesis. Endocrine Review, 7, 284–301.CrossRefGoogle Scholar
  51. Sauro, M. D., Jorgensen, R. S., & Pedlow, C. T. (2003). Stress, glucocorticoids, and memory: A meta analytic review. Stress, 6, 235–245.PubMedCrossRefGoogle Scholar
  52. Saykin, A. J., Ahles, T. A., & McDonald, B. C. (2003). Mechanisms of chemotherapy-induced cognitive disorders: Neuropsychological, pathophysiological and neuroimaging perspectives. Seminars in Clinical Neuropsychology, 8, 201–216.Google Scholar
  53. Schagen, S. B., Das, E., & van Dam, F. S. A. M. (2009). The influence of priming and pre-existing knowledge of chemotherapy-associated cognitive complaints on the reporting of such complaints in breast cancer patients. Psychooncology, 18, 674–678.PubMedCrossRefGoogle Scholar
  54. Schagen, S. B., Muller, M. J., Boogerd, W., Mellenbergh, G. J., & van Dam, F. S. A. M. (2006). Change in cognitive function after chemotherapy: A prospective longitudinal study in breast cancer patients. Journal of the National Cancer Institute, 98, 1742–1745.PubMedCrossRefGoogle Scholar
  55. Schagen, S. B., Muller, M. J., Boogerd, W., Rosenbrand, R. M., van Rhijn, D., Rodenhuis, S., et al. (2002). Late effects of adjuvant chemotherapy on cognitive function: A follow up study in breast cancer patients. Annals of Oncology, 13, 1387–1397.PubMedCrossRefGoogle Scholar
  56. Schagen, S. B., van Dam, F. S. A. M., Muller, M. J., Boogerd, W., Lindeboom, J., & Bruning, P. F. (1999). Cognitive deficits after postoperative adjuvant chemotherapy for breast carcinoma. Cancer, 85, 640–650.PubMedCrossRefGoogle Scholar
  57. Schmeichel, B. J. (2007). Attention control, memory updating, and emotion regulation temporarily reduce the capacity for executive control. Journal of Experimental Psychology: General, 136, 241–255.CrossRefGoogle Scholar
  58. Schmeichel, B. J., Vohs, K. D., & Baumeister, R. F. (2003). Intellectual performance and ego depletion: Role of the self in logical reasoning and other information processing. Journal of Personality and Social Psychology, 85, 33–46.PubMedCrossRefGoogle Scholar
  59. Schoofs, D., Preuß, D., & Wolf, O. T. (2008). Psychosocial stress induces working memory impairments in an n-back paradigm. Psychoneuroendocrinology, 33, 643–653.PubMedCrossRefGoogle Scholar
  60. Stanton, A. L., Danoff-Burg, S., Cameron, C. L., Bishop, M., Collins, C. A., Kirk, S. B., et al. (2000). Emotionally expressive coping predicts psychological and physical adjustment to breast cancer. Journal of Consulting and Clinical Psychology, 68, 875–882.PubMedCrossRefGoogle Scholar
  61. Stewart, A., Bielajew, C., Collins, B., Parkinson, M., & Tomiak, E. (2006). A meta-analysis of the neuropsychological effects of adjuvant chemotherapy treatment in women treated for breast cancer. Clinical Neuropsychologist, 20, 76–89.PubMedCrossRefGoogle Scholar
  62. Strauss, E., Sherman, E. M. S., & Spreen, O. (2006). A compendium of neuropsychological tests: Administration, norms, and commentary (3rd ed.). New York, NY: Oxford University Press.Google Scholar
  63. Tannock, I. F., Ahles, T. A., Ganz, P. A., & Van Dam, F. S. (2003). Cognitive impairment associated with chemotherapy for cancer: Report of a workshop. Journal of Clinical Oncology, 22, 2233–2239.CrossRefGoogle Scholar
  64. Taylor, E. M. (1959). Psychological appraisal of children with cerebral deficits. Cambridge, MA: Harvard University Press.Google Scholar
  65. van Dam, F. S. A. M., Schagen, S. B., Muller, J. M., Boogerd, W., Wall, E. V. D., Droogleever Fortuyn, M. E., et al. (1998). Impairment of cognitive function in women receiving adjuvant treatment for high-risk breast cancer: High-dose versus standard-dose chemotherapy. Journal of the National Cancer Institute, 90, 210–218.PubMedCrossRefGoogle Scholar
  66. Vardy, J., Rourke, S., & Tannock, I. F. (2007). Evaluation of cognitive function associated with chemotherapy: A review of published studies and recommendations for future research. Journal of Clinical Oncology, 25, 2455–2463.PubMedCrossRefGoogle Scholar
  67. Von Ah, D., & Kang, D. H. (2008). Correlates of mood disturbance in women with breast cancer: Patterns over time. Journal of Advanced Nursing, 61, 676–689.CrossRefGoogle Scholar
  68. Watson, M., Greer, S., Young, J., Inayat, Q., Burgess, C., & Robertson, B. (1988). Development of a questionnaire measure of adjustment to cancer: The MAC scale. Psychological Medicine, 18, 203–209.PubMedCrossRefGoogle Scholar
  69. Wechsler, D. (1997). WMS-III: Wechsler memory scale administration and scoring manual. San Antonio, TX: The Psychological Corporation.Google Scholar
  70. Wefel, J. S., Lenzi, R., Theriault, R., Buzdar, A. U., Cruickshank, S., & Meyers, C. A. (2004). ‘Chemobrain’ in breast carcinoma?: A prologue. Cancer, 101, 466–475.PubMedCrossRefGoogle Scholar
  71. Weiss, D. S., & Marmar, C. R. (1997). The Impact of Event Scale—Revised. In J. P. Wilson & T. M. Keane (Eds.), Assessing psychological trauma and PTSD: A handbook for practitioners (pp. 399–411). New York, NY: Guilford.Google Scholar
  72. Wolf, O. T. (2009). Stress and memory in humans: Twelve years of progress? Brain Research, 1293, 142–154.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Health Psychology, School of Health ProfessionsUniversity of MissouriColumbiaUSA
  2. 2.Department of PsychologyTexas Christian UniversityFort WorthUSA

Personalised recommendations