Advertisement

Degree bounded bottleneck spanning trees in three dimensions

  • Patrick J. AndersenEmail author
  • Charl J. Ras
Article
  • 5 Downloads

Abstract

The geometric \(\delta \)-minimum spanning tree problem (\(\delta \)-MST) is the problem of finding a minimum spanning tree for a set of points in a normed vector space, such that no vertex in the tree has a degree which exceeds \(\delta \), and the sum of the lengths of the edges in the tree is minimum. The similarly defined geometric \(\delta \)-minimum bottleneck spanning tree problem (\(\delta \)-MBST), is the problem of finding a degree bounded spanning tree such that the length of the longest edge is minimum. For point sets that lie in the Euclidean plane, both of these problems have been shown to be NP-hard for certain specific values of \(\delta \). In this paper, we investigate the \(\delta \)-MBST problem in 3-dimensional Euclidean space and 3-dimensional rectilinear space. We show that the problems are NP-hard for certain values of \(\delta \), and we provide inapproximability results for these cases. We also describe new approximation algorithms for solving these 3-dimensional variants, and then analyse their worst-case performance.

Keywords

Minimum spanning trees Bottleneck objective Approximation algorithms Discrete geometry Bounded degree Combinatorial optimisation 

Notes

References

  1. Agarwal PK, Edelsbrunner H, Schwarzkopf O, Welzl E (1991) Euclidean minimum spanning trees and bichromatic closest pairs. Discrete Comput Geom 6(3):407–422MathSciNetzbMATHCrossRefGoogle Scholar
  2. Akyildiz IF, Pompili D, Melodia T (2005) Underwater acoustic sensor networks: research challenges. Ad Hoc Netw 3(3):257–279CrossRefGoogle Scholar
  3. Andersen PJ, Ras CJ (2016) Minimum bottleneck spanning trees with degree bounds. Networks 68(4):302–314MathSciNetzbMATHCrossRefGoogle Scholar
  4. Andersen PJ, Ras CJ (2019) Algorithms for Euclidean degree bounded spanning tree problems. Int J Comput Geom Appl 29(02):121–160MathSciNetzbMATHCrossRefGoogle Scholar
  5. Arora S (1998) Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J ACM 45(5):753–782MathSciNetzbMATHCrossRefGoogle Scholar
  6. Berman O, Einav D, Handler G (1990) The constrained bottleneck problem in networks. Oper Res 38(1):178–181MathSciNetzbMATHCrossRefGoogle Scholar
  7. Beardwood J, Halton JH, Hammersley JM (1959) The shortest path through many points. Math Proc Camb Philos Soc 55(4):299–327MathSciNetzbMATHCrossRefGoogle Scholar
  8. Brazil M, Ras CJ, Thomas DA (2012) The bottleneck 2-connected \(k\)-Steiner network problem for \(k \ge 2\). Discrete Appl Math 160(7–8):1028–1038MathSciNetzbMATHCrossRefGoogle Scholar
  9. Camerini PM (1978) The min-max spanning tree problem and some extensions. Inf Process Lett 7(1):10–14MathSciNetzbMATHCrossRefGoogle Scholar
  10. Chan TM (2004) Euclidean bounded-degree spanning tree ratios. Discrete Comput Geom 32(2):177–194MathSciNetzbMATHCrossRefGoogle Scholar
  11. Cieslik D (1991) The 1-Steiner-minimal-tree problem in Minkowski-spaces. Optimization 22(2):291–296MathSciNetzbMATHCrossRefGoogle Scholar
  12. Deo N, Micikevicius P (1999) A heuristic for a leaf constrained minimum spanning tree problem. Congr Numer 141:61–272MathSciNetzbMATHGoogle Scholar
  13. Fampa M, Anstreicher KM (2008) An improved algorithm for computing Steiner minimal trees in Euclidean \(d\)-space. Discrete Optim 5(2):530–540MathSciNetzbMATHCrossRefGoogle Scholar
  14. Francke A, Hoffmann M (2009) The Euclidean degree-4 minimum spanning tree problem is NP-hard. In: Proceedings of the twenty-fifth annual symposium on computational geometry, ACM, pp 179–188Google Scholar
  15. Garey MR, Johnson DS (1979) Computers and Intractability: a guide to the theory of NP-completeness. Freeman W.H., New YorkzbMATHGoogle Scholar
  16. Graham RL, Hell P (1985) On the history of the minimum spanning tree problem. Ann Hist Comput 7(1):43–57MathSciNetzbMATHCrossRefGoogle Scholar
  17. Khuller S, Raghavachari B, Young N (1996) Low-degree spanning trees of small weight. SIAM J Comput 25(2):355–368MathSciNetzbMATHCrossRefGoogle Scholar
  18. Könemann J, Ravi R (2002) A matter of degree: Improved approximation algorithms for degree-bounded minimum spanning trees. SIAM J Comput 31(6):1783–1793MathSciNetzbMATHCrossRefGoogle Scholar
  19. Kruskal JB (1956) On the shortest spanning subtree of a graph and the traveling salesman problem. Proc Am Math Soc 7(1):48–50MathSciNetzbMATHCrossRefGoogle Scholar
  20. Larman DG, Zong C (1999) On the kissing numbers of some special convex bodies. Discrete Comput Geom 21(2):233–242MathSciNetzbMATHCrossRefGoogle Scholar
  21. Martin H, Swanepoel KJ (2006) Low-degree minimal spanning trees in normed spaces. Appl Math Lett 19(2):122–125MathSciNetzbMATHCrossRefGoogle Scholar
  22. Monma C, Suri S (1992) Transitions in geometric minimum spanning trees. Discrete Comput Geom 8(3):265–293MathSciNetzbMATHCrossRefGoogle Scholar
  23. Papadimitriou CH (1977) The Euclidean travelling salesman problem is NP-complete. Theor Comput Sci 4(3):237–244zbMATHCrossRefGoogle Scholar
  24. Papadimitriou CH, Vazirani UV (1984) On two geometric problems related to the travelling salesman problem. J Algorithms 5(2):231–246MathSciNetzbMATHCrossRefGoogle Scholar
  25. Prim RC (1957) Shortest connection networks and some generalizations. Bell Syst Tech J 36(6):1389–1401CrossRefGoogle Scholar
  26. Punnen AP, Nair KPK (1996) An improved algorithm for the constrained bottleneck spanning tree problem. INFORMS J Comput 8(1):41–44zbMATHCrossRefGoogle Scholar
  27. Ravi R, Goemans MX (1996) The constrained minimum spanning tree problem. In: Scandinavian Workshop on Algorithm Theory, Springer, pp 66–75Google Scholar
  28. Robins G, Salowe JS (1995) Low-degree minimum spanning trees. Discrete Comput Geom 14(2):151–165MathSciNetzbMATHCrossRefGoogle Scholar
  29. Sarrafzadeh M, Wong CK (1992) Bottleneck Steiner trees in the plane. IEEE Trans Comput 3:370–374MathSciNetzbMATHCrossRefGoogle Scholar
  30. Smith WD (1992) How to find Steiner minimal trees in Euclidean \(d\)-space. Algorithmica 7(1–6):137–177MathSciNetzbMATHCrossRefGoogle Scholar
  31. Talata I (1999) The translative kissing number of tetrahedra is 18. Discrete Comput Geom 22(2):231–248MathSciNetzbMATHCrossRefGoogle Scholar
  32. Tassiulas L (1997) Worst case length of nearest neighbor tours for the Euclidean traveling salesman problem. SIAM J Discrete Math 10(2):171–179MathSciNetzbMATHCrossRefGoogle Scholar
  33. Thomas DA, Wen JF (2014) Euclidean Steiner trees optimal with respect to swapping 4-point subtrees. Optim Lett 8(4):1337–1359MathSciNetzbMATHCrossRefGoogle Scholar
  34. Toth LF (1975) On Hadwiger numbers and Newton numbers of a convex body. Studia Sci Math Hungar 10:111–115MathSciNetzbMATHGoogle Scholar
  35. Vaidya PM (1988) Minimum spanning trees in \(k\)-dimensional space. SIAM J Comput 17(3):572–582MathSciNetzbMATHCrossRefGoogle Scholar
  36. Wu BY, Chao KM (2004) Spanning trees and optimization problems. Chapman and Hall, New YorkzbMATHCrossRefGoogle Scholar
  37. Yao ACC (1982) On constructing minimum spanning trees in \(k\)-dimensional spaces and related problems. SIAM J Comput 11(4):721–736MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsThe University of MelbourneMelbourneAustralia

Personalised recommendations