Advertisement

Efficient algorithms for measuring the funnel-likeness of DAGs

  • Marcelo Garlet Millani
  • Hendrik MolterEmail author
  • Rolf Niedermeier
  • Manuel Sorge
Article
  • 14 Downloads

Abstract

We propose funnels as a new natural subclass of DAGs. Intuitively, a DAG is a funnel if every source-sink path can be uniquely identified by one of its arcs. Funnels are an analogue to trees for directed graphs, being more restrictive than DAGs but more expressive than mere in-/out-trees. Computational problems such as finding vertex-disjoint paths or tracking the origin of memes remain NP-hard on DAGs while on funnels they become solvable in polynomial time. Our main focus is the algorithmic complexity of finding out how funnel-like a given DAG is. To this end, we identify the NP-hard problem of computing the arc-deletion distance of a given DAG to a funnel. We develop efficient exact and approximation algorithms for the problem and test them on synthetic random graphs and real-world graphs.

Keywords

Directed graphs Acyclic digraph NP-hard problems Approximation hardness Fixed-parameter tractability Approximation algorithms Graph parameters Experiments 

Notes

Acknowledgements

We are grateful to anonymous reviewers of Journal of Combinatorial Optimization whose constructive feedback helped to improve the presentation and remove some bugs from this paper.

References

  1. Agrawal A, Saurabh S, Sharma R, Zehavi M (2018) Kernels for deletion to classes of acyclic digraphs. J Comput Syst Sci 92:9–21MathSciNetCrossRefGoogle Scholar
  2. Agrawal A, Saurabh S, Sharma R, Zehavi M (2018) Parameterised algorithms for deletion to classes of DAGs. Theory Comput Syst 62(8):1880–1909MathSciNetCrossRefGoogle Scholar
  3. Ailon N, Alon N (2007) Hardness of fully dense problems. Inf Comput 205(8):1117–1129MathSciNetCrossRefGoogle Scholar
  4. Bang-Jensen J, Gutin G (2018) Classes of directed graphs. Springer Monographs in Mathematics Springer. Springer, BerlinCrossRefGoogle Scholar
  5. Bang-Jensen J, Gutin GZ (2009) Digraphs: theory, algorithms and applications. Springer, BerlinCrossRefGoogle Scholar
  6. Bessy S, Fomin FV, Gaspers S, Paul C, Perez A, Saurabh S, Thomassé S (2011) Kernels for feedback arc set in tournaments. J Comput Syst Sci 77(6):1071–1078MathSciNetCrossRefGoogle Scholar
  7. Bonsma P, Lokshtanov D (2011) Feedback vertex set in mixed graphs. In: Proceedings of the 12th international symposium on algorithms and data structures (WADS ’11), LNCS, vol 6844, pp 122–133. Springer, BerlinzbMATHGoogle Scholar
  8. Cai L (2003) Parameterized complexity of vertex colouring. Discrete Appl Math 127(3):415–429MathSciNetCrossRefGoogle Scholar
  9. Charbit P, Thomassé S, Yeo A (2007) The minimum feedback arc set problem is NP-hard for tournaments. Combin Probab Comput 16(1):1–4MathSciNetCrossRefGoogle Scholar
  10. Chen J, Liu Y, Lu S, O’Sullivan B, Razgon I (2008) A fixed-parameter algorithm for the directed feedback vertex set problem. J ACM 55(5):21MathSciNetCrossRefGoogle Scholar
  11. Chitnis R, Cygan M, Hajiaghayi M, Marx D (2015) Directed subset feedback vertex set is fixed-parameter tractable. ACM Trans Algorithms 11(4):28MathSciNetCrossRefGoogle Scholar
  12. Cygan M, Fomin FV, Łukasz K, Marx DLD, Pilipczuk M, Pilipczuk M, Saurabh S (2015) Parametr Algorithms. Springer International Publishing, BerlinCrossRefGoogle Scholar
  13. Diestel R (2016) Graph theory. Graduate texts in mathematics, vol 173, 5th edn. Springer, BelrinGoogle Scholar
  14. Dom M, Guo J, Hüffner F, Niedermeier R, Truß A (2010) Fixed-parameter tractability results for feedback set problems in tournaments. J Discrete Algorithms 8(1):76–86MathSciNetCrossRefGoogle Scholar
  15. Downey RG, Fellows MR (2013) Fundamentals of parameterized complexity. Texts in computer science. Springer, BerlinCrossRefGoogle Scholar
  16. Feige U (1998) A threshold of \(\ln n\) for approximating set cover. J ACM 45(4):634–652MathSciNetCrossRefGoogle Scholar
  17. Fortune S, Hopcroft J, Wyllie J (1980) The directed subgraph homeomorphism problem. Theor Comput Sci 10(2):111–121MathSciNetCrossRefGoogle Scholar
  18. Ganian R, Hlinený P, Kneis J, Langer A, Obdrzálek J, Rossmanith P (2014) Digraph width measures in parameterized algorithmics. Discrete Appl Math 168:88–107MathSciNetCrossRefGoogle Scholar
  19. Ganian R, Hlinený P, Kneis J, Meister D, Obdrzálek J, Rossmanith P, Sikdar S (2016) Are there any good digraph width measures? J Combin Theory Ser B 116:250–286MathSciNetCrossRefGoogle Scholar
  20. Guo J, Hüffner F, Niedermeier R (2004) A structural view on parameterizing problems: distance from triviality. In: Proceedings of the 1st international workshop on parameterized and exact computation (IWPEC ’04), pp 162–173. Springer, BerlinCrossRefGoogle Scholar
  21. Impagliazzo R, Paturi R (2001) On the complexity of \(k\)-SAT. J Comput Syst Sci 62(2):367–375MathSciNetCrossRefGoogle Scholar
  22. Impagliazzo R, Paturi R, Zane F (2001) Which problems have strongly exponential complexity? J Comput Syst Sci 63(4):512–530MathSciNetCrossRefGoogle Scholar
  23. Johnson T, Robertson N, Seymour PD, Thomas R (2001) Directed tree-width. J Combin Theory Ser B 82(1):138–154MathSciNetCrossRefGoogle Scholar
  24. Kenyon-Mathieu C, Schudy W (2007) How to rank with few errors. In: Proceedings of the 39th ACM symposium on theory of computing (STOC ’07), pp 95–103. ACMGoogle Scholar
  25. Kunegis J (2013) KONECT—The Koblenz network collection. In: Proceedings of the 22nd international world wide web conference (WWW ’13), pp 1343–1350. ACMGoogle Scholar
  26. Lehmann J (2017) The computational complexity of worst case flows in unreliable flow networks. Bachelor thesis, Institut für Theoretische Informatik, Universität zu LübeckGoogle Scholar
  27. Leskovec J, Backstrom L, Kleinberg J (2009) Meme-tracking and the dynamics of the news cycle. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining (KDD ’09), pp 497–506. ACMGoogle Scholar
  28. Lund C, Yannakakis M (1993) The approximation of maximum subgraph problems. In: Proceedings of the 20th international colloquium on automata, languages, and programming (ICALP ’93), LNCS, vol 700, pp 40–51. SpringerGoogle Scholar
  29. Millani MG (2017) Funnels—algorithmic complexity of problems on special directed acyclic graphs. Master thesis, Algorithmics and computational complexity (AKT), TU Berlin. http://fpt.akt.tu-berlin.de/publications/theses/MA-marcelo-millani.pdf
  30. Millani MG (2017) Parfunn—parameters for funnels. https://gitlab.tubit.tu-berlin.de/mgmillani1/parfunn
  31. Millani MG, Molter H, Niedermeier R, Sorge M (2018) Efficient algorithms for measuring the funnel-likeness of DAGs. In: Proceedings of the 5th international symposium on combinatorial optimization (ISCO ’18), LNCS, vol 10856, pp 183–195. SpringerGoogle Scholar
  32. Mnich M, van Leeuwen EJ (2017) Polynomial kernels for deletion to classes of acyclic digraphs. Discrete Optim 25:48–76MathSciNetCrossRefGoogle Scholar
  33. Niedermeier R (2010) Reflections on multivariate algorithmics and problem parameterization. In: Proceedings of the 27th international symposium on theoretical aspects of computer science (STACS ’10), pp 17–32. Schloss Dagstuhl–Leibniz-Zentrum für InformatikGoogle Scholar
  34. van Bevern R, Bredereck R, Chopin M, Hartung S, Hüffner F, Nichterlein A, Suchý O (2017) Fixed-parameter algorithms for DAG partitioning. Discrete Appl Math 220:134–160MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Marcelo Garlet Millani
    • 1
  • Hendrik Molter
    • 1
    Email author
  • Rolf Niedermeier
    • 1
  • Manuel Sorge
    • 1
    • 2
    • 3
  1. 1.Institut für Softwaretechnik und Theoretische InformatikTU BerlinBerlinGermany
  2. 2.Faculty of Mathematics, Informatics and MechanicsUniversity of WarsawWarsawPoland
  3. 3.Department of Industrial Engineering and ManagementBen-Gurion University of the Negev Beer ShevaIsrael

Personalised recommendations