Advertisement

Journal of Combinatorial Optimization

, Volume 38, Issue 4, pp 1043–1065 | Cite as

Generalizations of weighted matroid congestion games: pure Nash equilibrium, sensitivity analysis, and discrete convex function

  • Kenjiro TakazawaEmail author
Article

Abstract

Congestion games provide a model of human’s behavior of choosing an optimal strategy while avoiding congestion. In the past decade, matroid congestion games have been actively studied and their good properties have been revealed. In most of the previous work, the cost functions are assumed to be univariate or bivariate. In this paper, we discuss generalizations of matroid congestion games in which the cost functions are n-variate, where n is the number of players. First, motivated from polymatroid congestion games with \(\mathrm {M}^\natural \)-convex cost functions, we conduct sensitivity analysis for separable \(\mathrm {M}^\natural \)-convex optimization, which extends that for separable convex optimization over base polyhedra by Harks et al. (SIAM J Optim 28:2222–2245, 2018. https://doi.org/10.1137/16M1107450). Second, we prove the existence of pure Nash equilibria in matroid congestion games with monotone cost functions, which extends that for weighted matroid congestion games by Ackermann et al. (Theor Comput Sci 410(17):1552–1563, 2009. https://doi.org/10.1016/j.tcs.2008.12.035). Finally, we prove the existence of pure Nash equilibria in matroid resource buying games with submodular cost functions, which extends that for matroid resource buying games with marginally nonincreasing cost functions by Harks and Peis (Algorithmica 70(3):493–512, 2014. https://doi.org/10.1007/s00453-014-9876-6).

Keywords

Matroid congestion game Resource buying game Pure Nash equilibrium Monotone set function Submodular function \({\mathrm {M}}^\natural \)-convex function 

Notes

References

  1. Ackermann H, Röglin H, Vöcking B (2008) On the impact of combinatorial structure on congestion games. J ACM 55(6):25:1–25:22.  https://doi.org/10.1145/1455248.1455249 MathSciNetCrossRefzbMATHGoogle Scholar
  2. Ackermann H, Röglin H, Vöcking B (2009) Pure Nash equilibria in player-specific and weighted congestion games. Theor Comput Sci 410(17):1552–1563.  https://doi.org/10.1016/j.tcs.2008.12.035 MathSciNetCrossRefzbMATHGoogle Scholar
  3. Bhaskar U, Fleischer L, Hoy D, Huang C-C (2015) On the uniqueness of equilibrium in atomic splittable routing games. Math Oper Res 40(3):634–654.  https://doi.org/10.1287/moor.2014.0688 MathSciNetCrossRefzbMATHGoogle Scholar
  4. Cominetti R, Correa JR, Moses NES (2009) The impact of oligopolistic competition in networks. Oper Res 57(6):1421–1437.  https://doi.org/10.1287/opre.1080.0653 MathSciNetCrossRefzbMATHGoogle Scholar
  5. Fujishige S (2005) Submodular functions and optimization. Annals of discrete mathematics, vol 58, 2nd edn. Elsevier, AmsterdamzbMATHGoogle Scholar
  6. Fujishige S, Goemans MX, Harks T, Peis B, Zenklusen R (2015) Congestion games viewed from M-convexity. Oper Res Lett 43(3):329–333.  https://doi.org/10.1016/j.orl.2015.04.002 MathSciNetCrossRefzbMATHGoogle Scholar
  7. Fujishige S, Goemans MX, Harks T, Peis B, Zenklusen R (2017) Matroids are immune to Braess’ paradox. Math Oper Res 42(3):745–761.  https://doi.org/10.1287/moor.2016.0825 MathSciNetCrossRefzbMATHGoogle Scholar
  8. Harks T, Peis B (2014) Resource buying games. Algorithmica 70(3):493–512.  https://doi.org/10.1007/s00453-014-9876-6 MathSciNetCrossRefzbMATHGoogle Scholar
  9. Harks T, Peis B (2015) Resource buying games. In: Schulz AS, Skutella M, Stiller S, Wagner D (eds) Gems of combinatorial optimization and graph algorithms. Springer, Berlin, pp 103–111.  https://doi.org/10.1007/978-3-319-24971-1_10 CrossRefGoogle Scholar
  10. Harks T, Timmermans V (2018) Uniqueness of equilibria in atomic splittable polymatroid congestion games. J Comb Optim 36(3):812–830.  https://doi.org/10.1007/s10878-017-0166-5 MathSciNetCrossRefzbMATHGoogle Scholar
  11. Harks T, Klimm M, Peis B (2018) Sensitivity analysis for convex separable optimization over integeral polymatroids. SIAM J Optim 28:2222–2245.  https://doi.org/10.1137/16M1107450 MathSciNetCrossRefzbMATHGoogle Scholar
  12. Huang C-C (2013) Collusion in atomic splittable routing games. Theory Comput Syst 52(4):763–801.  https://doi.org/10.1007/s00224-012-9421-4 MathSciNetCrossRefzbMATHGoogle Scholar
  13. Moriguchi S, Shioura A, Tsuchimura N (2011) M-convex function minimization by continuous relaxation approach: proximity theorem and algorithm. SIAM J Optim 21(3):633–668.  https://doi.org/10.1137/080736156 MathSciNetCrossRefzbMATHGoogle Scholar
  14. Murota K (1996) Convexity and Steinitz’s exchange property. Adv Math 125:272–331.  https://doi.org/10.1006/aima.1996.0084 MathSciNetCrossRefzbMATHGoogle Scholar
  15. Murota K (2003) Discrete convex analysis. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefGoogle Scholar
  16. Murota K (2016) Discrete convex analysis: a tool for economics and game theory. J Mech Inst Des 1:151–273.  https://doi.org/10.22574/jmid.2016.12.005 CrossRefGoogle Scholar
  17. Murota K, Shioura A (1999) M-convex function on generalized polymatroid. Math Oper Res 24:95–105.  https://doi.org/10.1287/moor.24.1.95 MathSciNetCrossRefzbMATHGoogle Scholar
  18. Murota K, Tamura A (2004) Proximity theorems of discrete convex functions. Math Program 99(3):539–562.  https://doi.org/10.1007/s10107-003-0466-7 MathSciNetCrossRefzbMATHGoogle Scholar
  19. Rosenthal RW (1973) A class of games possessing pure-strategy Nash equilibria. Int J Game Theory 2:65–67.  https://doi.org/10.1007/BF01737559 MathSciNetCrossRefzbMATHGoogle Scholar
  20. Schrijver A (2003) Combinatorial optimization: polyhedra and efficiency. Springer, HeidelbergzbMATHGoogle Scholar
  21. Takazawa K (2019) Generalizations of weighted matroid congestion games: pure Nash equilibrium, sensitivity analysis, and discrete convex function. In: Gopal TV, Watada J (eds) 15th Annual conference on theory and applications of models of computation (TAMC). Lecture notes in computer science, vol 11436. Springer, Berlin, pp 594–614.  https://doi.org/10.1007/978-3-030-14812-6_37 CrossRefGoogle Scholar
  22. Tran-Thanh L, Polukarov M, Chapman AC, Rogers A, Jennings NR (2011) On the existence of pure strategy Nash equilibria in integer-splittable weighted congestion games. In: Persiano G (ed) 4th International symposium on algorithmic game theory (SAGT). Lecture notes in computer science, vol 6982. Springer, Berlin, pp 236–253.  https://doi.org/10.1007/978-3-642-24829-0_22 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hosei UniversityKoganei-shiJapan

Personalised recommendations