Journal of Combinatorial Optimization

, Volume 36, Issue 4, pp 1145–1167 | Cite as

Congestion games with mixed objectives

  • Matthias FeldottoEmail author
  • Lennart Leder
  • Alexander Skopalik


We study a new class of games which generalizes congestion games and its bottleneck variant. We introduce congestion games with mixed objectives to model network scenarios in which players seek to optimize for latency and bandwidths alike. We characterize the (non-)existence of pure Nash equilibria (PNE), the convergence of improvement dynamics, the quality of equilibria and show the complexity of the decision problem. For games that do not possess PNE we give bounds on the approximation ratio of approximate pure Nash equilibria.


Congestion games Bottleneck congestion games Pure Nash equilibrium Existence Convergence Complexity Approximation 


  1. Ackermann H, Röglin H, Vöcking B (2009) Pure nash equilibria in player-specific and weighted congestion games. Theor Comput Sci 410(17):1552–1563MathSciNetCrossRefGoogle Scholar
  2. Ackermann H, Röglin H, Vöcking B (2008) On the impact of combinatorial structure on congestion games. J ACM 55(6):25:1–25:22MathSciNetCrossRefGoogle Scholar
  3. Ackermann H, Skopalik A (2008) Complexity of pure nash Equilibria in player-specific network congestion games. Internet Math 5(4):323–342MathSciNetCrossRefGoogle Scholar
  4. Banner R, Orda A (2007) Bottleneck routing games in communication networks. IEEE J Sel Areas Commun 25(6):1173–1179CrossRefGoogle Scholar
  5. Caragiannis I, Fanelli A, Gravin N, Skopalik A (2011) Efficient Computation of approximate pure Nash equilibria in congestion games. In IEEE 52nd annual symposium on foundations of computer science (FOCS), pp 532–541Google Scholar
  6. Caragiannis I, Fanelli A, Gravin N, Skopalik A (2015) Approximate pure Nash equilibria in weighted congestion games: existence, efficient computation, and structure. ACM Trans Econ Comput 3(1):1–2MathSciNetCrossRefGoogle Scholar
  7. Chien S, Sinclair A (2011) Convergence to approximate nash equilibria in congestion games. Games Econ Behav 71(2):315–327MathSciNetCrossRefGoogle Scholar
  8. Cole R, Dodis Y, Roughgarden T (2012) Bottleneck links, variable demand, and the tragedy of the commons. Networks 60(3):194–203MathSciNetCrossRefGoogle Scholar
  9. Dunkel J, Schulz AS (2008) On the complexity of pure-strategy Nash equilibria in congestion and local-effect games. Math Oper Res 33(4):851–868MathSciNetCrossRefGoogle Scholar
  10. Feldotto M, Gairing M, Skopalik A (2014) Bounding the potential function in congestion games and approximate pure Nash equilibria. In Liu T, Qi Q, Ye Y (eds) Web and internet economics - 10th international conference, WINE 2014, Beijing, China, December 14–17, 2014. Proceedings. Lecture Notes in Computer Science, vol 8877, pp 30–43. SpringerGoogle Scholar
  11. Fortune S, Hopcroft J, Wyllie J (1980) The directed subgraph homeomorphism problem. Theor Comput Sci 10(2):111–121MathSciNetCrossRefGoogle Scholar
  12. Fotakis D, Kontogiannis S, Spirakis P (2005) Selfish unsplittable flows. Theor Comput Sci 348(2):226–239MathSciNetCrossRefGoogle Scholar
  13. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman, New YorkzbMATHGoogle Scholar
  14. Hansknecht C, Klimm M, Skopalik A (2014) Approximate pure Nash equilibria in weighted congestion games. In Jansen K, Rolim JDP, Devanur NR, Moore C (eds) Approximation, randomization, and combinatorial optimization. Algorithms and techniques (APPROX/RANDOM 2014). Leibniz international proceedings in informatics (LIPIcs), vol 28, pp 242–257. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, GermanyGoogle Scholar
  15. Harks T, Hoefer M, Schewior K, Skopalik A (2016) Routing games with progressive filling. IEEE/ACM Trans Netw 24(4):2553–2562CrossRefGoogle Scholar
  16. Harks T, Hoefer M, Klimm M, Skopalik A (2013) Computing pure nash and strong equilibria in bottleneck congestion games. Math Program 141(1):193–215MathSciNetCrossRefGoogle Scholar
  17. Harks T, Klimm M, Möhring RH (2009) Strong Nash equilibria in games with the lexicographical improvement property. In Leonardi S (ed) Internet and network economics, 5th international workshop, WINE 2009, Rome, Italy, December 14–18, 2009. Proceedings. Lecture notes in computer science, vol 5929, pp 463–470. SpringerGoogle Scholar
  18. Mavronicolas M, Milchtaich I, Monien B, Tiemann K (2007) Congestion games with player-specific constants. In Kucera L, Kucera A (eds) Mathematical foundations of computer science 2007, 32nd international symposium, MFCS 2007, Ceský Krumlov, Czech Republic, August 26–31, 2007, Proceedings. Lecture notes in computer science, vol 4708, pp 633–644. SpringerGoogle Scholar
  19. Milchtaich I (1996) Congestion games with player-specific payoff functions. Games Econ Behav 13(1):111–124MathSciNetCrossRefGoogle Scholar
  20. Monderer D, Shapley LS (1996) Potential games. Games Econ Behav 14(1):124–143MathSciNetCrossRefGoogle Scholar
  21. Rosenthal RW (1973) A class of games possessing pure-strategy nash equilibria. Int J Game Theory 2(1):65–67MathSciNetCrossRefGoogle Scholar
  22. Skopalik A, Vöcking B (2008) Inapproximability of pure Nash equilibria. In Proceedings of the fortieth annual ACM symposium on theory of computing. pp 355–364. STOC ’08, ACM, New York, NY, USAGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Paderborn UniversityPaderbornGermany

Personalised recommendations