# A tighter insertion-based approximation of the crossing number

- 140 Downloads
- 2 Citations

## Abstract

Let *G* be a planar graph and *F* a set of additional edges not yet in *G*. The *multiple edge insertion* problem (MEI) asks for a drawing of \(G+F\) with the minimum number of pairwise edge crossings, such that the subdrawing of *G* is plane. Finding an exact solution to MEI is NP-hard for general *F*. We present the first polynomial time algorithm for MEI that achieves an additive approximation guarantee—depending only on the size of *F* and the maximum degree of *G*, in the case of connected *G*. Our algorithm seems to be the first directly implementable one in that realm, too, next to the single edge insertion. It is also known that an (even approximate) solution to the MEI problem would approximate the crossing number of the *F-almost-planar graph* \(G+F\), while computing the crossing number of \(G+F\) exactly is NP-hard already when \(|F|=1\). Hence our algorithm induces new, improved approximation bounds for the crossing number problem of *F*-almost-planar graphs, achieving constant-factor approximation for the large class of such graphs of bounded degrees and bounded size of *F*.

## Keywords

Planar graph Multiple edge insertion SPQR tree Crossing number## References

- Bhatt SN, Leighton FT (1984) A framework for solving vlsi graph layout problems. J Comput Syst Sci 28(2):300–343MathSciNetCrossRefzbMATHGoogle Scholar
- Bienstock D, Monma CL (1990) On the complexity of embedding planar graphs to minimize certain distance measures. Algorithmica 5(1):93–109MathSciNetCrossRefzbMATHGoogle Scholar
- Cabello S, Mohar B (2011) Crossing and weighted crossing number of near planar graphs. Algorithmica 60:484–504MathSciNetCrossRefzbMATHGoogle Scholar
- Cabello S, Mohar B (2013) Adding one edge to planar graphs makes crossing number and 1-planarity hard. SIAM J Comput 42:1803–1829MathSciNetCrossRefzbMATHGoogle Scholar
- Chimani M (2008) Computing crossing numbers. PhD thesis, TU Dortmund, Germany, Online. www.cs.uos.de/theoinf
- Chimani M, Gutwenger C (2012) Advances in the planarization method: effective multiple edge insertions. J. Graph Algorithms Appl 16(3):729–757MathSciNetCrossRefzbMATHGoogle Scholar
- Chimani M, Gutwenger C, Mutzel P, Wolf C (2009) Inserting a vertex into a planar graph. In: Proceedings SODA ’09, pp 375–383Google Scholar
- Chimani M, Hliněný P (2011) A tighter insertion-based approximation of the crossing number. In: Proceedngs ICALP ’11, vol 6755 of
*LNCS*, Springer, New York, pp 122–134Google Scholar - Chimani M, Hliněný P (2016) Inserting multiple edges into a planar graph. In: Proceedings SoCG ’16, pages—to appear. Dagstuhl, arXiv:1509.07952
- Chimani M, Hliněný P, Mutzel P (2012) Vertex insertion approximates the crossing number for apex graphs. Eur J Comb 33:326–335MathSciNetCrossRefzbMATHGoogle Scholar
- Chuzhoy J (2011) An algorithm for the graph crossing number problem. In Proceedings STOC ’11, ACM, pp 303–312Google Scholar
- Chuzhoy J, Makarychev Y, Sidiropoulos A (2011) On graph crossing number and edge planarization. In: Proceedings SODA ’11. ACM Press, New York, pp 1050–1069Google Scholar
- Di Battista G, Tamassia R (1996) On-line planarity testing. SIAM J Comput 25:956–997MathSciNetCrossRefzbMATHGoogle Scholar
- Even G, Guha S, Schieber B (2002) Improved approximations of crossings in graph drawings and VLSI layout areas. SIAM J Comput 32(1):231–252MathSciNetCrossRefzbMATHGoogle Scholar
- Gitler I, Hliněný P, Leanos J, Salazar G (2008) The crossing number of a projective graph is quadratic in the face-width. Electron J Comb 15(1):46Google Scholar
- Gutwenger C (2010) Application of SPQR-trees in the planarization approach for drawing graphs. PhD thesis, TU Dortmund, GermanyGoogle Scholar
- Gutwenger C, Mutzel P (2001) A linear time implementation of SPQR trees. In: Proceedings GD ’00, vol 1984 of
*LNCS*. Springer, New York, pp 77–90Google Scholar - Gutwenger C, Mutzel P (2004) An experimental study of crossing minimization heuristics. In: Proceedings GD ’03, vol 2912.
*LNCS*. Springer, New York, pp 13–24Google Scholar - Gutwenger C, Mutzel P, Weiskircher R (2005) Inserting an edge into a planar graph. Algorithmica 41(4):289–308MathSciNetCrossRefzbMATHGoogle Scholar
- Hliněný P, Chimani M (2010) Approximating the crossing number of graphs embeddable in any orientable surface. In: Proceedings SODA ’10, pp 918–927Google Scholar
- Hliněný P, Salazar G (2006) On the crossing number of almost planar graphs. In: Proceedings GD ’05, vol 4372.
*LNCS*. Springer, New York, pp 162–173Google Scholar - Hliněný P, Salazar G (2007) Approximating the crossing number of toroidal graphs. In Proceedings ISAAC ’07, vol 4835. LNCS. Springer, New York, pp 148–159Google Scholar
- Hopcroft JE, Tarjan RE (1973) Dividing a graph into triconnected components. SIAM J Comput 2(3):135–158MathSciNetCrossRefzbMATHGoogle Scholar
- Masuda S, Nakajima K, Kashiwabara T, Fujisawa T (1990) Crossing minimization in linear embeddings of graphs. IEEE Trans Comput 39:124–127MathSciNetCrossRefGoogle Scholar
- Tutte WT (1966) Connectivity in graphs. In: Mathematical expositions, vol 15. University of Toronto Press, TorontoGoogle Scholar
- Vrt’o I (2014) Crossing numbers of graphs: a bibliography. ftp://ftp.ifi.savba.sk/pub/imrich/crobib.pdf
- Ziegler T (2001) Crossing minimization in automatic graph drawing. PhD thesis, Saarland University, GermanyGoogle Scholar