Journal of Combinatorial Optimization

, Volume 28, Issue 1, pp 3–24 | Cite as

Bound and exact methods for assessing link vulnerability in complex networks

Article

Abstract

Assessing network systems for failures is critical to mitigate the risk and develop proactive responses. In this paper, we investigate devastating consequences of link failures in networks. We propose an exact algorithm and a spectral lower-bound on the minimum number of removed links to incur a significant level of disruption. Our exact solution can identify optimal solutions in both uniform and weighted networks through solving a well-constructed mixed integer program. Also, our spectral lower-bound derives from the Laplacian eigenvalues an estimation on the vulnerability of large networks that are intractable for exact methods. Through experiments on both synthetic and real-world networks, we demonstrate the efficiency of the proposed methods.

Keywords

Vulnerability assessment Pairwise connectivity Integer programming Spectral bound 

Notes

Acknowledgments

This work is partially supported by NSF CAREER Award #0953284.

References

  1. Addis B, Summa MD, Grosso A (2013) Identifying critical nodes in undirected graphs: complexity results and polynomial algorithms for the case of bounded treewidth. Discrete Appl Math 161(1617):2349–2360. doi:10.1016/j.dam.2013.03.021. URL http://www.sciencedirect.com/science/article/pii/S0166218X13001686
  2. Albert R, Albert I, Nakarado GL (2004) Structural vulnerability of the North American power grid. Phys Rev E 69(2):10CrossRefGoogle Scholar
  3. Albert R, Jeong H, Barabasi A (2000) Error and attack tolerance of complex networks. Nature 406(6794):378–382. doi:10.1038/35019019 CrossRefGoogle Scholar
  4. Arulselvan A, Commander CW, Elefteriadou L, Pardalos PM (2009) Detecting critical nodes in sparse graphs. Comput Oper Res 36(7):2193–2200. doi:10.1016/j.cor.2008.08.016 CrossRefMATHMathSciNetGoogle Scholar
  5. Banerjee S, Shirazipourazad S, Sen A (2011) Design and analysis of networks with large components in presence of region-based faults. In: IEEE international conference on communications (ICC), 2011, pp 1–6. doi:10.1109/icc.2011.5962427
  6. Barabasi A, Albert R, Jeong H (2000) Scale-free characteristics of random networks: the topology of the world-wide web. Physica 281:69–77CrossRefGoogle Scholar
  7. Bazgan C, Toubaline S, Vanderpooten D (2013) Complexity of determining the most vital elements for the p-median and p-center location problems. J Comb Optim 25(2):191–207. doi:10.1007/s10878-012-9469-8 CrossRefMATHMathSciNetGoogle Scholar
  8. Bazgan C, Toubaline S, Vanderpooten D (2013) Critical edges/nodes for the minimum spanning tree problem: complexity and approximation. J Comb Optim 26(1):178–189. doi:10.1007/s10878-011-9449-4 CrossRefMATHMathSciNetGoogle Scholar
  9. Bissias G, Levine BN, Rosenberg AL (2007) Bounding damage from link destruction with application to the internet (extended abstract). In: Proc. ACM SIGMETRICS, pp 367–368. http://prisms.cs.umass.edu/brian/pubs/bissias.sigmetrics.abstract.2007.pdf
  10. Bissias GD (2010) Bounds on service quality for networks subject to augmentation and attack. Ph.D. thesis, University of Massachusetts AmherstGoogle Scholar
  11. Blackford LS, Choi J, Cleary A, D’Azeuedo E, Demmel J, Dhillon I, Hammarling S, Henry G, Petitet A, Stanley K, Walker D, Whaley RC (1997) ScaLAPACK user’s guide. SIAMGoogle Scholar
  12. Borgatti SP (2006) Identifying sets of key players in a social network. Comput Math Organ Theory 12(1):21–34. doi:10.1007/s10588-006-7084-x CrossRefMATHGoogle Scholar
  13. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press. http://books.google.com/books?id=mYm0bLd3fcoC
  14. Chung FRK (1997) Spectral graph theory (CBMS regional conference series in mathematics, No. 92). American Mathematical Society, Providence. http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0821803158
  15. Di Summa M, Grosso A, Locatelli M (2012) Branch and cut algorithms for detecting critical nodes in undirected graphs. Comput Optim Appl 53(3):649–680. doi:10.1007/s10589-012-9458-y CrossRefMATHMathSciNetGoogle Scholar
  16. Dinh TN, Thai MT (2011) Precise structural vulnerability assessment via mathematical programming. In: Proc. of IEEE MILCOMGoogle Scholar
  17. Dinh TN, Thai MT (2014) Network under joint node and link attacks: vulnerability assessment methods and analysis. IEEE/ACM Trans Netw 99:00–12. doi:10.1109/TNET.2011.2170849 Google Scholar
  18. Dinh TN, Xuan Y, Thai MT, Park EK, Znati T (2010) On approximation of new optimization methods for assessing network vulnerability. INFOCOM. IEEE Press, Piscataway, pp 2678–2686Google Scholar
  19. Donath WE, Hoffman AJ (1973) Lower bounds for the partitioning of graphs. IBM J Res Dev 17. doi:10.1147/rd.175.0420. http://dx.doi.org/10.1147/rd.175.0420
  20. Erdos P, Renyi A (1960) On the evolution of random graphs. Publ Math Inst Hungary Acad Sci 5:17–61MathSciNetGoogle Scholar
  21. Goldberg AV, Tarjan RE (1986) A new approach to the maximum flow problem. In: Proceedings of the eighteenth annual ACM symposium on theory of computing, STOC ’86, pp 136–146. ACM, New York, NY, USA. doi:10.1145/12130.12144. http://doi.acm.org/10.1145/12130.12144
  22. Grubesic TH, Matisziw TC, Murray AT, Snediker D (2008) Comparative approaches for assessing network vulnerability. Int Reg Sci Rev 31. doi:10.1177/0160017607308679
  23. Leskovec J, Kleinberg J, Faloutsos C (2005) Graphs over time: densification laws, shrinking diameters and possible explanations. In: KDD, ACM, pp 177–187. doi:10.1145/1081870.1081893
  24. Matisziw TC, Murray AT (2009) Modeling s–t path availability to support disaster vulnerability assessment of network infrastructure. Comput Oper Res 36:16–26. doi:10.1016/j.cor.2007.09.004 CrossRefMATHGoogle Scholar
  25. Mohar B, Poljak S (1992) Eigenvalue in combinatorial optimization. In: Combinatorial and graph–theoretical problems in linear algebraGoogle Scholar
  26. Murray AT, Matisziw TC, Grubesic TH (2008) A methodological overview of network vulnerability analysis. Growth Change 39(4):573–592. doi:10.1111/j.1468-2257.2008.00447.x CrossRefGoogle Scholar
  27. Neumayer S, Zussman G, Cohen R, Modiano E (2011) Assessing the vulnerability of the fiber infrastructure to disasters. IEEE/ACM Trans Netw 1610–1623Google Scholar
  28. Oosten M, Rutten JHGC, Spieksma FCR (2007) Disconnecting graphs by removing vertices: a polyhedral approach. Stat Neerl 61(1):35–60. doi:10.1111/j.1467-9574.2007.00350.x CrossRefMATHMathSciNetGoogle Scholar
  29. Sen A, Murthy S, Banerjee S (2009) Region-based connectivity—a new paradigm for design of fault-tolerant networks. In: HPSRGoogle Scholar
  30. Shen S, Smith JC (2012) Polynomial-time algorithms for solving a class of critical node problems on trees and series–parallel graphs. Networks 60(2):103–119. doi:10.1002/net.20464 MATHMathSciNetGoogle Scholar
  31. Shen Y, Dinh T, Thai M (2012) Adaptive algorithms for detecting critical links and nodes in dynamic networks. In: Military communications conference, 2012—MILCOM 2012, pp 1–6. doi:10.1109/MILCOM.2012.6415629
  32. Shen Y, Nguyen NP, Xuan Y, Thai MT (2013) On the discovery of critical links and nodes for assessing network vulnerability. IEEE/ACM Trans Netw 21(3):963–973. doi:10.1109/TNET.2012.2215882 CrossRefGoogle Scholar
  33. Su B, Xu Q, Xiao P (2008) Finding the anti-block vital edge of a shortest path between two nodes. J Comb Optim 16(2):173–181. doi:10.1007/s10878-007-9120-2 CrossRefMATHMathSciNetGoogle Scholar
  34. Ventresca M, Aleman D (2014) A derandomized approximation algorithm for the critical node detection problem. Comput Oper Res 43(0):261–270. doi:10.1016/j.cor.2013.09.012. http://www.sciencedirect.com/science/article/pii/S0305054813002827
  35. Veremyev A, Boginski V, Pasiliao E (2014) Exact identification of critical nodes in sparse networks via new compact formulations. Optim Lett 8(4):1245–1259. doi:10.1007/s11590-013-0666-x CrossRefMATHMathSciNetGoogle Scholar
  36. Watts DJ, Strogatz SH (1998) Collective dynamics of ’small-world’ networks. Nature 393(6684):440–442. doi:10.1038/30918 CrossRefGoogle Scholar
  37. White S, Smyth P (2005) A spectral clustering approach to finding communities in graph. In: SDMGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceVirginia Commonwealth UniversityRichmondUSA
  2. 2.Department of Computer & Information Science & EngineeringUniversity of FloridaGainesvilleUSA
  3. 3.Faculty of Information TechnologyTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations