Journal of Combinatorial Optimization

, Volume 28, Issue 1, pp 58–81 | Cite as

The unconstrained binary quadratic programming problem: a survey

  • Gary Kochenberger
  • Jin-Kao Hao
  • Fred Glover
  • Mark Lewis
  • Zhipeng Lü
  • Haibo Wang
  • Yang Wang
Article

Abstract

In recent years the unconstrained binary quadratic program (UBQP) has grown in importance in the field of combinatorial optimization due to its application potential and its computational challenge. Research on UBQP has generated a wide range of solution techniques for this basic model that encompasses a rich collection of problem types. In this paper we survey the literature on this important model, providing an overview of the applications and solution methods.

Keywords

Unconstrained binary quadratic programs Combinatorial optimization Metaheuristics 

References

  1. Alidaee B, Glover F, Kochenberger GA, Rego C (2005) A new modeling and solution approach for the number partitioning problem. J Appl Math Decis Sci 2005(2):113–121. doi:10.1155/JAMDS.2005.113 CrossRefMATHMathSciNetGoogle Scholar
  2. Alidaee B, Kochenberger G, Lewis K, Lewis M, Wang H (2008) A new approach for modeling and solving set packing problems. Eur J Oper Res 186(2):504–512. doi:10.1016/j.ejor.2006.12.068 CrossRefMATHMathSciNetGoogle Scholar
  3. Alidaee B, Kochenberger GA, Ahmadian A (1994) 0–1 Quadratic programming approach for optimum solutions of two scheduling problems. Int J Syst Sci 25(2):401–408. doi:10.1080/00207729408928968 CrossRefMATHMathSciNetGoogle Scholar
  4. Alkhamis TM, Hasan M, Ahmed MA (1998) Simulated annealing for the unconstrained quadratic pseudo-Boolean function. Eur J Oper Res 108(3):641–652. doi:10.1016/S0377-2217(97)00130-6 CrossRefMATHGoogle Scholar
  5. Amini MM, Alidaee B, Kochenberger GA (eds) (1999) A scatter search approach to unconstrained quadratic binary programs. New ideas in optimization. McGraw-Hill Ltd., LondonGoogle Scholar
  6. Barahona F (1986) A solvable case of quadratic 0–1 programming. Discret Appl Math 13(1):23–26. doi:10.1016/0166-218X(86)90065-X CrossRefMATHMathSciNetGoogle Scholar
  7. Barahona F, Grotschel M, Junger M, Reinelt G (1988) An application of combinatorial optimization to statistical. Oper Res 36(3):493CrossRefMATHGoogle Scholar
  8. Barahona F, Junger M, Reinelt G (1989) Experiments in quadratic 0–1 programming. Math Program 44:127–137CrossRefMATHMathSciNetGoogle Scholar
  9. Beck A, Teboulle M (2000) Global optimality conditions for quadratic optimization problems with binary constraints. SIAM J Optim 11(1):179–188CrossRefMATHMathSciNetGoogle Scholar
  10. Beasley JE (1998) Heuristic algorithms for the unconstrained binary quadratic programming problem. PhD thesis, Imperial College, EnglandGoogle Scholar
  11. Billionnet A, Elloumi S (2007) Using a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problem. Math Program 109(1):55–68CrossRefMATHMathSciNetGoogle Scholar
  12. Billionnet A, Sutter A (1994) Minimization of a quadratic pseudo-Boolean function. Eur J Oper Res 78(1):106–115. doi:10.1016/0377-2217(94)90125-2 CrossRefMATHGoogle Scholar
  13. Bomze IM, Budinich M, Pardalos PM, Pelillo M (1999) The maximum clique problem. In: Handbook of combinatorial optimization. Springer, Berlin, pp 1–74Google Scholar
  14. Boros E, Hammer P, Sun X (1989) The DDT method for quadratic 0–1 minimization. RUTCOR Research Center, RRR:39–89Google Scholar
  15. Boros E, Hammer PL (1991) The max-cut problem and quadratic 0–1 optimization polyhedral aspects, relaxations and bounds. Ann Oper Res 33(1–4):151–180CrossRefMATHMathSciNetGoogle Scholar
  16. Boros E, Hammer PL (2002) Pseudo-Boolean optimization. Discret Appl Math 123(1–3):155–225. doi:10.1016/S0166-218X(01)00341-9 CrossRefMATHMathSciNetGoogle Scholar
  17. Boros E, Hammer PL, Tavares G (2006) Preprocessing of Unconstrained Quadratic Binary Optimization. Rutcor Research Report, vol 13Google Scholar
  18. Boros E, Hammer PL, Tavares G (2007) Local search heuristics for quadratic unconstrained binary optimization (QUBO). J Heuristics 13(2):99–132CrossRefGoogle Scholar
  19. Cai Y, Wang J, Yin J, Zhou Y (2011) Memetic clonal selection algorithm with EDA vaccination for unconstrained binary quadratic programming problems. Expert Syst Appl 38(6):7817–7827. doi:10.1016/j.eswa.2010.12.124 CrossRefGoogle Scholar
  20. Carraesi P, Malucelli F, Farinaccio F (1995) Testing optimality for quadratic 0-1 unconstrained problems. ZOR-Math Methods Oper Res 42:295–311CrossRefMathSciNetGoogle Scholar
  21. Carraesi P, Farinaccio F, Malucelli F (1999) Testing optimality for quadratic 0-1 problems. Math Program 85:407–421CrossRefMathSciNetGoogle Scholar
  22. Carter MW (1984) The indefinite zero-one quadratic problem. Discret Appl Math 7(1):23–44CrossRefMATHGoogle Scholar
  23. De Simone C, Diehl M, Jünger M, Mutzel P, Reinelt G, Rinaldi G (1995) Exact ground states of Ising spin glasses: new experimental results with a branch-and-cut algorithm. J Stat Phys 80(1–2):487–496CrossRefMATHGoogle Scholar
  24. Douiri SM, Elbernouss S (2012) The unconstrained binary quadratic programming for the sum coloring problem. Mod Appl Sci 6(9):26–33. doi:10.5539/mas.v6n9p26 CrossRefGoogle Scholar
  25. Gao D, Ruan N (2010) Solutions to quadratic minimization problems with box and integer constraints. J Global Optim 47:463–484. doi:10.1007/s10898-009-9469-0 CrossRefMATHMathSciNetGoogle Scholar
  26. Glover F, Alidaee B, Rego C, Kochenberger G (2002) One-pass heuristics for large-scale unconstrained binary quadratic problems. Eur J Oper Res 137(2):272–287. doi:10.1016/S0377-2217(01)00209-0 CrossRefMATHMathSciNetGoogle Scholar
  27. Glover F, Kochenberger G, Alidaee B, Amini M (1999) Tabu search with critical event memory: an enhanced application for binary quadratic programs. In: Meta-Heuristics. Springer, Berlin, pp 93–109Google Scholar
  28. Glover F, Kochenberger GA, Alidaee B (1998) Adaptive memory tabu search for binary quadratic programs. Manag Sci 44(3):336–345CrossRefMATHGoogle Scholar
  29. Glover F, Lü Z, Hao J-K (2010) Diversification-driven tabu search for unconstrained binary quadratic problems. 4OR 8(3):239–253CrossRefMATHMathSciNetGoogle Scholar
  30. Gueye S, Michelon P (2009) A linearization framework for unconstrained quadratic (0-1) problems. Discret Appl Math 157(6):1255–1266. doi:10.1016/j.dam.2008.01.028 CrossRefMATHMathSciNetGoogle Scholar
  31. Gulati VP, Gupta SK, Mittal AK (1984) Unconstrained quadratic bivalent programming problem. Eur J Oper Res 15(1):121–125. doi:10.1016/0377-2217(84)90055-9 CrossRefMATHMathSciNetGoogle Scholar
  32. Hammer P, Shlifer E (1971) Applications of pseudo-Boolean methods to economic problems. Theor Decis 1(3):296–308. doi:10.1007/BF00139572 CrossRefMATHGoogle Scholar
  33. Hammer PL, Rudeanu S (1968) Boolean methods in operations research and related areas, vol 5. Springer, BerlinCrossRefMATHGoogle Scholar
  34. Hanafi S, Rebai AR, Vasquez M (2013) Several versions of the devour digest tidy-up heuristic for unconstrained binary quadratic problems. J Heuristics 19(4):645–677CrossRefGoogle Scholar
  35. Hansen P (1979) Methods of nonlinear 0-1 programming. Ann Discret Math 5:53–70. doi:10.1016/S0167-5060(08)70343-1 CrossRefMATHGoogle Scholar
  36. Hansen P, Jaumard B (1990) Algorithms for the maximum satisfiability problem. Computing 44(4):279–303CrossRefMATHMathSciNetGoogle Scholar
  37. Hansen P, Jaumard B, Mathon V (1993) State-of-the-art survey-constrained nonlinear 0-1 programming. ORSA J Comput 5(2):97–119CrossRefMATHMathSciNetGoogle Scholar
  38. Hansen P, Jaumard B, Meyer C (2000) Exact sequential algorithms for additive clustering. Groupe d’études et de recherche en analyse des décisions, MontréalGoogle Scholar
  39. Helmberg C, Rendl F (1998) Solving quadratic (0, 1)-problems by semidefinite programs and cutting planes. Math Program Ser B 82(3):291–315CrossRefMATHMathSciNetGoogle Scholar
  40. Huang H-X, Pardalos PM, Prokopyev OA (2006) Lower bound improvement and forcing rule for quadratic binary programming. Comput Optim Appl 33(2–3):187–208CrossRefMATHMathSciNetGoogle Scholar
  41. Iasemidis L, Pardalos P, Sackellares J, Shiau D-S (2001) Quadratic binary programming and dynamical system approach to determine the predictability of epileptic seizures. J Comb Optim 5(1):9–26CrossRefMATHMathSciNetGoogle Scholar
  42. Jeyakumar V, Rubinov AM, Wu ZY (2007) Non-convex quadratic minimization problems with quadratic constraints: global optimality conditions. Math Program Ser A 110:521–541. doi:10.1007/s10107-006-0012-5 CrossRefMATHMathSciNetGoogle Scholar
  43. Kalantari B, Bagchi A (1990) An algorithm for quadratic zero-one programs. Naval Res Logist (NRL) 37(4):527–538CrossRefMathSciNetGoogle Scholar
  44. Katayama K, Narihisa H (2001) Performance of simulated annealing-based heuristic for the unconstrained binary quadratic programming problem. Eur J Oper Res 134(1):103–119. doi:10.1016/S0377-2217(00)00242-3 CrossRefMATHMathSciNetGoogle Scholar
  45. Katayama K, Tani M, Narihisa H (2000) Solving large binary quadratic programming problems by effective genetic local search algorithm. In: Proceedings of 2000 Genetic and Evolutionary Computation Conference, pp 643–650Google Scholar
  46. Kernighan B, Lin S (1970) An eflicient heuristic procedure for partitioning graphs. Bell Syst Tech J 49:291–307CrossRefMATHGoogle Scholar
  47. Kochenberger G, Alidaee B, Glover F, Wang H (2007) An effective modeling and solution approach for the generalized independent set problem. Optim Lett 1(1):111–117CrossRefMATHMathSciNetGoogle Scholar
  48. Kochenberger G, Glover F, Alidaee B, Lewis K (2005a) Using the unconstrained quadratic program to model and solve Max 2-SAT problems. Int J Oper Res 1(1):89–100CrossRefMATHMathSciNetGoogle Scholar
  49. Kochenberger G, Glover F, Alidaee B, Rego C (2005b) An unconstrained quadratic binary programming approach to the vertex coloring problem. Ann Oper Res 139(1–4):229–241. doi:10.1007/s10479-005-3449-7 CrossRefMATHMathSciNetGoogle Scholar
  50. Kochenberger G, Glover F, Alidaee B, Wang H (2005c) Clustering of microarray data via clique partitioning. J Comb Optim 10(1):77–92CrossRefMATHMathSciNetGoogle Scholar
  51. Kochenberger GA, Hao J-K, Lü Z, Wang H, Glover F (2013) Solving large scale max cut problems via tabu search. J Heuristics 19(4):565–571CrossRefGoogle Scholar
  52. Krarup J, Pruzan P (1978) Computer-aided layout design. In: Balinski ML, Lemarechal C (eds) Mathematical Programming in Use, vol 9. Mathematical Programming Studies. Springer, Berlin, pp 75–94. doi:10.1007/BFb0120827
  53. Laughhunn D (1970) Quadratic binary programming with application to capital-budgeting problems. Oper Res 18(3):454–461CrossRefMATHGoogle Scholar
  54. Lewis M, Alidaee B, Glover F, Kochenberger G (2009) A note on xQx as a modelling and solution framework for the Linear Ordering Problem. Int J Oper Res 5(2):152–162CrossRefMATHGoogle Scholar
  55. Lewis M, Alidaee B, Kochenberger G (2005) Using xQx to model and solve the uncapacitated task allocation problem. Oper Res Lett 33(2):176–182. doi:10.1016/j.orl.2004.04.014 CrossRefMATHMathSciNetGoogle Scholar
  56. Lewis M, Kochenberger G, Alidaee B (2008) A new modeling and solution approach for the set-partitioning problem. Comput Oper Res 35(3):807–813. doi:10.1016/j.cor.2006.04.002 CrossRefMATHMathSciNetGoogle Scholar
  57. Lewis M, Kochenberger G, Wang H, Glover F (2013) Exact Solutions to Generalized Vertex Covering Problems: A Comparison of Two Models. working paperGoogle Scholar
  58. Li D, Sun XL, Liu CL (2012) An exact solution method for unconstrained quadratic 0 1 programming: a geometric approach. J Global Optim 52(4):797–829CrossRefMATHMathSciNetGoogle Scholar
  59. Li G (2012) Global quadratic minimization over bivalent constraints: necessary and sufficient global optimality condition. J Optim Theory 52:710–726. doi:10.1007/s10957-011-9930-3 CrossRefGoogle Scholar
  60. Lodi A, Allemand K, Liebling TM (1999) An evolutionary heuristic for quadratic 0–1 programming. Eur J Oper Res 119(3):662–670. doi:10.1016/S0377-2217(98)00359-2 CrossRefMATHGoogle Scholar
  61. Lu C, Fang A, Jin Q, Wang Z, Xing W (2011) KKT solution and conic relaxation for solving quadratically constrained quadratic programming problems. SIAM J Optim 21(4):1475–1490CrossRefMATHMathSciNetGoogle Scholar
  62. Lü Z, Glover F, Hao J-K (2010a) A hybrid metaheuristic approach to solving the UBQP problem. Eur J Oper Res 207(3):1254–1262. doi:10.1016/j.ejor.2010.06.039 CrossRefMATHGoogle Scholar
  63. Lü Z, Hao J-K, Glover F (2010b) A study of memetic search with multi-parent combination for UBQP. In: Evolutionary Computation in Combinatorial Optimization. Springer, Berlin, pp 154–165Google Scholar
  64. Lü Z, Hao J-K, Glover F (2011) Neighborhood analysis: a case study on curriculum-based course timetabling. J Heuristics 17(2):97–118. doi:10.1007/s10732-010-9128-0 CrossRefGoogle Scholar
  65. Mahdavi Pajouh F, Balasundaram B, Prokopyev OA (2013) On characterization of maximal independent sets via quadratic optimization. J Heuristics 19(4):629–644CrossRefGoogle Scholar
  66. Mauri GR, Lorena LAN (2011) Lagrangean decompositions for the unconstrained binary quadratic programming problem. Int Trans Oper Res 18(2):257–270. doi:10.1111/j.1475-3995.2009.00743.x CrossRefMATHMathSciNetGoogle Scholar
  67. Mauri GR, Lorena LAN (2012a) A column generation approach for the unconstrained binary quadratic programming problem. Eur J Oper Res 217(1):69–74. doi:10.1016/j.ejor.2011.09.016 CrossRefMATHMathSciNetGoogle Scholar
  68. Mauri GR, Lorena LAN (2012b) Improving a Lagrangian decomposition for the unconstrained binary quadratic programming problem. Comput Oper Res 39(7):1577–1581. doi:10.1016/j.cor.2011.09.008 CrossRefMATHMathSciNetGoogle Scholar
  69. Merz P, Freisleben B (1999) Genetic algorithms for binary quadratic programming. In: Proceedings of the genetic and evolutionary computation conference, Citeseer, pp 417–424Google Scholar
  70. Merz P, Freisleben B (2002) Greedy and local search heuristics for unconstrained binary quadratic programming. J Heuristics 8(2):197–213CrossRefMATHGoogle Scholar
  71. Merz P, Katayama K (2004) Memetic algorithms for the unconstrained binary quadratic programming problem. Biosystems 78(1–3):99–118. doi:10.1016/j.biosystems.2004.08.002 CrossRefGoogle Scholar
  72. Neven H, Rose G, Macready WG (2008) Image recognition with an adiabatic quantum computer I. Mapping to quadratic unconstrained binary optimization. arXiv:0804.4457
  73. Oosten M, Rutten J, Spieksma F (2001) The Clique partitioning problem: facets and patching facets. Networks 38(4):209–226CrossRefMATHMathSciNetGoogle Scholar
  74. Palubeckis G (1995) A heuristic-based branch and bound algorithm for unconstrained quadratic zero-one programming. Computing 54(4):283–301. doi:10.1007/BF02238228 CrossRefMATHMathSciNetGoogle Scholar
  75. Palubeckis G (2004) Multistart tabu search strategies for the unconstrained binary quadratic optimization problem. Ann Oper Res 131(1–4):259–282. doi:10.1023/B:ANOR.0000039522.58036.68 CrossRefMATHMathSciNetGoogle Scholar
  76. Palubeckis G (2006) Iterated tabu search for the unconstrained binary quadratic optimization problem. Informatica 17(2):279–296MATHMathSciNetGoogle Scholar
  77. Palubeckis G, Tomkevicius A (2002) GRASP implementations for the unconstrained binary quadratic optimization problem. Inf Technol Control 24:14–20Google Scholar
  78. Pan S, Tan T, Jiang Y (2008) A global continuation algorithm for solving binary quadratic programming problems. Comput Optim Appl 41(3):349–362. doi:10.1007/s10589-007-9110-4 CrossRefMATHMathSciNetGoogle Scholar
  79. Pardalos PM, Jha S (1991) Graph separation techniques for quadratic zero-one programming. Comput Math Appl 21(6–7):107–113. doi:10.1016/0898-1221(91)90165-Z CrossRefMATHMathSciNetGoogle Scholar
  80. Pardalos PM, Jha S (1992) Complexity of uniqueness and local search in quadratic 0-1 programming. Oper Res Lett 11(2):119–123. doi:10.1016/0167-6377(92)90043-3 CrossRefMATHMathSciNetGoogle Scholar
  81. Pardalos PM, Prokopyev OA, Busygin S (2006) Continuous approaches for solving discrete optimization problems. In: Handbook on modelling for discrete optimization. Springer, Berlin, pp 39–60Google Scholar
  82. Pardalos PM, Rodgers GP (1990a) Computational aspects of a branch and bound algorithm for quadratic zero-one programming. Computing 45(2):131–144CrossRefMATHMathSciNetGoogle Scholar
  83. Pardalos PM, Rodgers GP (1990b) Parallel branch and bound algorithms for quadratic zero-one programs on the hypercube architecture. Ann Oper Res 22(1–4):271–292CrossRefMATHMathSciNetGoogle Scholar
  84. Pardalos PM, Rodgers GP (1992) A branch and bound algorithm for the maximum clique problem. Comput Oper Res 19(5):363–375. doi:10.1016/0305-0548(92)90067-F CrossRefMATHGoogle Scholar
  85. Pardalos PM, Xue J (1994) The maximum clique problem. J Global Optim 4(3):301–328CrossRefMATHMathSciNetGoogle Scholar
  86. Pham Dinh T, Nguyen Canh N, Le Thi HA (2010) An efficient combined DCA and B&B using DC/SDP relaxation for globally solving binary quadratic programs. J Global Optim 48(4):595–632CrossRefMATHMathSciNetGoogle Scholar
  87. Picard J-C (1976) Maximal closure of a graph and applications to combinatorial problems. Manag Sci 22(11):1268–1272. doi:10.2307/2630227 CrossRefMATHMathSciNetGoogle Scholar
  88. Pinar MC (2004) Sufficient global optimality conditions for bivalent quadratic optimization. J Optim Theory Appl 122(2):433–440CrossRefMATHMathSciNetGoogle Scholar
  89. Rao MR (1971) Cluster analysis and mathematical programming. J Am Stat Assoc 66(335):622–626. doi:10.1080/01621459.1971.10482319 CrossRefMATHGoogle Scholar
  90. Rhys J (1970) A selection problem of shared fixed costs and network flows. Manag Sci 17(3):200–207CrossRefMATHGoogle Scholar
  91. Shylo V, Shylo O (2011) Systems analysis solving unconstrained binary quadratic programming problem by global equilibrium search. Cybern Syst Anal 47(6):889–897. doi:10.1007/s10559-011-9368-5 CrossRefGoogle Scholar
  92. Sun XL, Liu CL, Li D, Gao JJ (2012) On duality gap in binary quadratic programming. J Global Optim 53:255–269. doi:10.1007/s10898-011-9683-4 CrossRefMATHMathSciNetGoogle Scholar
  93. Wang F, Xu Z (2013) Metaheuristics for robust graph coloring. J Heuristics 19(4):529–548CrossRefGoogle Scholar
  94. Wang H, Alidaee B, Glover F, Kochenberger G (2006) Solving group technology problems via clique partitioning. Int J Flex Manuf Syst 18(2):77–77CrossRefMATHGoogle Scholar
  95. Wang J, Zhou Y, Yin J (2011) Combining tabu Hopfield network and estimation of distribution for unconstrained binary quadratic programming problem. Expert Syst Appl 38(12):14870–14881. doi:10.1016/j.eswa.2011.05.060 CrossRefGoogle Scholar
  96. Wang Y, Lü Z, Glover F, Hao J-K (2012a) A multilevel algorithm for large unconstrained binary quadratic optimization. In: Integration of AI and OR Techniques in Contraint Programming for Combinatorial Optimzation Problems. Springer, Berlin, pp 395–408Google Scholar
  97. Wang Y, Lü Z, Glover F, Hao J-K (2012b) Path relinking for unconstrained binary quadratic programming. Eur J Oper Res 223(3):595–604. doi:10.1016/j.ejor.2012.07.012 CrossRefGoogle Scholar
  98. Wang Y, Lü Z, Glover F, Hao J-K (2012c) Probabilistic GRASP-tabu search algorithms for the UBQP problem. Comput Oper Res 40:3100–3107CrossRefGoogle Scholar
  99. Williams HP (1985) Model building in linear and integer programming. In: Schittkowski K (ed) Computational mathematical programming, vol 15. NATO ASI Series. Springer, Berlin, pp 25–53. doi:10.1007/978-3-642-82450-0_2
  100. Witzgall C (1975) Mathematical methods of site selection for Electronic Message Systems (EMS). NBS Internal report, NBSGoogle Scholar
  101. Xia Y (2009) New optimality conditions for quadratic optimization problems with binary constraints. Optim Lett 3:253–263. doi:10.1007/s11590-008-0105-6 CrossRefMATHMathSciNetGoogle Scholar
  102. Zheng XJ, Sun XL, Li D, Xu YF (2012) On zero duality gap in nonconvex quadratic programming problems. J Global Optim 52:229–242. doi:10.1007/s10898-011-9660-y CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Gary Kochenberger
    • 1
  • Jin-Kao Hao
    • 2
  • Fred Glover
    • 3
  • Mark Lewis
    • 4
  • Zhipeng Lü
    • 5
  • Haibo Wang
    • 6
  • Yang Wang
    • 7
  1. 1.School of Business AdministrationUniversity of Colorado at DenverDenverUSA
  2. 2.LERIAUniversité d’AngersAngersFrance
  3. 3.OptTek Inc.BoulderUSA
  4. 4.Craig School of BusinessMissouri Western State UniversitySaint JosephUSA
  5. 5.School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhan China
  6. 6.Sanchez School of BusinessTexas A&M International UniversityLaredoUSA
  7. 7.School of ManagementNorthwestern Polytechnical UniversityXi’an China

Personalised recommendations