Journal of Combinatorial Optimization

, Volume 28, Issue 2, pp 376–399 | Cite as

A Branch and Bound algorithm for general mixed-integer quadratic programs based on quadratic convex relaxation

  • Alain Billionnet
  • Sourour Elloumi
  • Amélie Lambert
Article

Abstract

Let \((MQP)\) be a general mixed-integer quadratic program that consists of minimizing a quadratic function \(f(x) = x^TQx +c^Tx\) subject to linear constraints. Our approach to solve \((MQP)\) is first to consider an equivalent general mixed-integer quadratic problem. This equivalent problem has additional variables \(y_{ij}\), additional quadratic constraints \(y_{ij}=x_ix_j\), a convex objective function, and a set of valid inequalities. Contrarily to the reformulation proposed in Billionnet et al. (Math Program 131(1):381–401, 2012), the equivalent problem cannot be directly solved by a standard solver. Here, we propose a new Branch and Bound process based on the relaxation of the non-convex constraints \(y_{ij}=x_ix_j\) to solve \((MQP)\). Computational experiences are carried out on pure- and mixed-integer quadratic instances. The results show that the solution time of most of the considered instances with up to 60 variables is improved by our Branch and Bound algorithm in comparison with the approach of Billionnet et al. (2012) and with the general mixed-integer nonlinear solver BARON (Sahinidis and Tawarmalani, Global optimization of mixed-integer nonlinear programs, user’s manual, 2010).

Keywords

General mixed-integer quadratic programming Branch and Bound Quadratic convex relaxation Experiments 

References

  1. Al-Khayyal FA, Larsen C, Van Voorhis T (1995) A relaxation method for nonconvex quadratically constrained programs. J Glob Optim 6:215–230CrossRefMATHMathSciNetGoogle Scholar
  2. Audet C, Hansen P, Jaumard B, Savard G (2000) A branch and cut algorithm for nonconvex quadratically constrained quadratic programs. Math Program 87:131–152MATHMathSciNetGoogle Scholar
  3. Audet C, Hansen P, Savard G (2005) Essays and surveys in global optimization. GERAD 25th anniversary series. Springer, New YorkCrossRefGoogle Scholar
  4. Billionnet A, Elloumi S, Lambert A (2012) Extending the QCR method to the case of general mixed integer programs. Math Program 131(1):381–401CrossRefMATHMathSciNetGoogle Scholar
  5. Bonami P, Biegler L, Conn A, Cornuéjols G, Grossmann I, Laird C, Lee J, Lodi A, Margot F, Sawaya N, Waechter A (2005) An algorithmic framework for convex mixed integer nonlinear programming. Discr Optim 5:186–204CrossRefGoogle Scholar
  6. Cui Y (2005) Dynamic programming algorithms for the optimal cutting of equal rectangles. Appl Math Model 29:1040–1053CrossRefMATHGoogle Scholar
  7. Buchheim C, Wiegele A (2010) Semidefinite relaxations for non-convex quadratic mixed-integer programming. Math Program (available online)Google Scholar
  8. Borchers B (1999) CSDP, A C library for semidefinite programming. Optim Methods Softw 11(1):613–623CrossRefMathSciNetGoogle Scholar
  9. Fernandez J, Toro MA, Caballero A (2001) Practical implementation of optimal management strategies in conservation programmes: a mate selection method. Anim Biodiv Conserv 24(2):17–24Google Scholar
  10. Floudas CA (2000) Deterministic global optimization. Kluwer, Dordrecht, The NetherlandsGoogle Scholar
  11. Frangioni A, Gentile C (2006) Perspective cuts for a class of convex 0–1 mixed integer programs. Math Program 106:225–236CrossRefMATHMathSciNetGoogle Scholar
  12. Fu HL, Shiue L, Cheng X, Du DZ, Kim JM (2001) Quadratic integer programming with application in the chaotic mappings of complete multipartite graphs. J Optim Theory Appl 110(3):545–556CrossRefMATHMathSciNetGoogle Scholar
  13. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completness. W.H. Freeman, San Francisco, CAGoogle Scholar
  14. Hua ZS, Banerjee P (2000) Aggregate line capacity design for PWB assembly systems. Int J Prod Res 38(11):2417–2441CrossRefMATHGoogle Scholar
  15. IBM-ILOG (2010) Reference manual. IBM ILOG CPLEX 12.1Google Scholar
  16. Liberti L, Maculan N (2006) Global optimization: from theory to implementation, chapter: nonconvex optimization and its applications. Springer, New YorkGoogle Scholar
  17. Linderoth J (2005) A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. Math Program 103:251–282CrossRefMATHMathSciNetGoogle Scholar
  18. McCormick GP (1976) Computability of global solutions to factorable non-convex programs: part I—convex underestimating problems. Math Program 10(1):147–175CrossRefMATHMathSciNetGoogle Scholar
  19. Raber U (1998) A simplicial branch-and-bound method for solving nonconvex all-quadratic programs. J Glob Optim 13:417–432CrossRefMATHMathSciNetGoogle Scholar
  20. Sahinidis NV, Tawarmalani M (2010) BARON 9.0.4: global optimization of mixed-integer nonlinear programs, user’s manual available. http://www.gams.com/dd/docs/solvers/baron.pdf
  21. Sahinidis NV, Tawarmalani M (2005) A polyhedral branch-and-cut approach to global optimization. Math Program 103(2):225–249CrossRefMATHMathSciNetGoogle Scholar
  22. Saxena A, Bonami P, Lee J (2011) Convex relaxations of non-convex mixed integer quadratically constrained programs: projected formulations. Math Program 130:359–413CrossRefMATHMathSciNetGoogle Scholar
  23. Saxena A, Bonami P, Lee J (2008) Disjunctive cuts for non-convex mixed integer quadratically constrained programs. IPCO, BolognaGoogle Scholar
  24. Tawarmalani M, Sahinidis NV (2002) Convexification and global optimization in continuous and mixed-integer nonlinear programming. Kluwer, DordrechtCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Alain Billionnet
    • 1
  • Sourour Elloumi
    • 1
  • Amélie Lambert
    • 2
  1. 1.CEDRIC-ENSIIEEvry CedexFrance
  2. 2.CEDRIC-CNAMParis Cedex 03France

Personalised recommendations