Journal of Combinatorial Optimization

, Volume 27, Issue 1, pp 115–131 | Cite as

On-line bin packing with restricted repacking

  • János BaloghEmail author
  • József Békési
  • Gábor Galambos
  • Gerhard Reinelt


Semi-on-line algorithms for the bin-packing problem allow, in contrast to pure on-line algorithms, the use of certain types of additional operations for each step. Examples include repacking, reordering or lookahead before packing the items. Here we define and analyze a semi-on-line algorithm where for each step at most k items can be repacked, for some positive integer k. We prove that the upper bound for the asymptotic competitive ratio of the algorithm is a decreasing function of k, which tends to 3/2 as k goes to infinity. We also establish lower bounds for this ratio and show that the gap between upper and lower bounds is relatively small.


Bin-packing Semi-on-line algorithm Worst-case behavior Competitive analysis 



The authors are grateful to the reviewers’ valuable comments, that improved the manuscript.


  1. Balogh J, Békési J (2012) Semi-on-line bin packing: a short overview and a new lower bound. Centr Eur J Oper Res. Submitted for publication Google Scholar
  2. Balogh J, Galambos G (2007) Algorithms for the on-line bin packing problem with repacking. Alkalmazott Matematikai Lapok 24:117–130. In Hungarian zbMATHMathSciNetGoogle Scholar
  3. Balogh J, Békési J, Galambos G (2011) New lower bounds for certain classes of bin packing algorithms. In: Proceedings of WAOA 2010 (8th workshop on approximation and online algorithms). LNCS, vol 6534, pp 25–36 Google Scholar
  4. Balogh J, Békési J, Galambos G, Reinelt G (2008) Lower bound for the online bin packing problem with restricted repacking. SIAM J Comput 38:398–410 CrossRefzbMATHMathSciNetGoogle Scholar
  5. Brown DJ (1979) A lower bound for on-line one-dimensional bin packing algorithms. Tech Rept R-864, Coordinated Science Laboratory, University of Illinois, Urbana, IL Google Scholar
  6. Chan JW-T, Lam T-W, Wong PWH (2008) Dynamic bin packing of unit fractions items. Theor Comput Sci 409:521–529 CrossRefzbMATHMathSciNetGoogle Scholar
  7. Coffmann EG, Garey MR, Johnson DS (1983) Dynamic bin packing. SIAM J Comput 12(2):227–260 CrossRefMathSciNetGoogle Scholar
  8. Coffman EG, Galambos G, Martello S, Vigo D (1999) Bin packing approximation algorithms: combinatorial analysis. In: Du D-Z, Pardalos PM (eds) Handbook of combinatorial optimization. Kluwer Academic Publishers, Dordrecht, pp 151–208 CrossRefGoogle Scholar
  9. Epstein L, Levin A (2008) On bin packing with conflicts. SIAM J Optim 19:1270–1298 CrossRefzbMATHMathSciNetGoogle Scholar
  10. Fernandez de la Vega W, Lueker GS (1981) Bin packing can be solved within 1+ε in linear time. Combinatorica 1:349–355 CrossRefzbMATHMathSciNetGoogle Scholar
  11. Galambos G (1985) A new heuristic for the classical bin packing problem. Tech Rept 82, Institut für Mathematik, Universität Augsburg Google Scholar
  12. Galambos G, Woeginger GJ (1993) Repacking helps in bounded space on-line bin packing. Computing 49:329–338 CrossRefzbMATHMathSciNetGoogle Scholar
  13. Gambosi G, Postiglione A, Talamo M (2000) Algorithms for the relaxed online bin-packing model. SIAM J Comput 30:1532–1551 CrossRefzbMATHMathSciNetGoogle Scholar
  14. Garey MR, Johnson DS (1979) Computers and intractability (a guide to the theory of NP-completeness). W.H. Freeman and Company, New York zbMATHGoogle Scholar
  15. Grove EF (1995) Online bin packing with lookahead, SODA, pp 430–436 Google Scholar
  16. Gutin G, Jensen T, Yeo A (2005) Batched bin packing. Discrete Optim 2:71–82 CrossRefzbMATHMathSciNetGoogle Scholar
  17. Han X, Peng C, Ye D, Zhang D, Lan Y (2010) Dynamic bin packing with unit fraction items revisited. Inf Process Lett 110(23):1049–1054 CrossRefMathSciNetGoogle Scholar
  18. Ivkovič Z, Lloyd EL (1996) A fundamental restriction on fully dynamic maintenance of bin packing. Inf Process Lett 59:229–232 CrossRefzbMATHGoogle Scholar
  19. Ivkovič Z, Lloyd EL (1998) Fully dynamic algorithms for bin packing: being (mostly) myopic helps. SIAM J Comput 28:574–611 CrossRefzbMATHGoogle Scholar
  20. Lee CC, Lee DT (1985) A simple on-line bin packing algorithm. J ACM 32:562–572 CrossRefzbMATHGoogle Scholar
  21. Liang FM (1980) A lower bound for on-line bin-packing. Inf Process Lett 10:76–79 CrossRefzbMATHGoogle Scholar
  22. Ramanan P, Brown DJ, Lee CC, Lee DT (1989) On-line bin packing in linear time. J Algorithms 10:305–326 CrossRefzbMATHMathSciNetGoogle Scholar
  23. Richey MB (1991) Improved bounds for harmonic-based bin packing algorithms. Discrete Appl Math 34:203–227 CrossRefzbMATHMathSciNetGoogle Scholar
  24. Salzer HE (1947) The approximation of numbers as sums of reciprocals. Am Math Mon 54:135–142 CrossRefMathSciNetGoogle Scholar
  25. Seiden SS (2002) On the online bin packing problem. J ACM 49:640–671 CrossRefMathSciNetGoogle Scholar
  26. Yao AC (1980) New algorithms for bin packing. J ACM 27:207–227 CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • János Balogh
    • 1
    Email author
  • József Békési
    • 1
  • Gábor Galambos
    • 1
  • Gerhard Reinelt
    • 2
  1. 1.Department of Applied Informatics, Gyula Juhász Faculty of EducationUniversity of SzegedSzegedHungary
  2. 2.Institute of Computer ScienceUniversity of HeidelbergHeidelbergGermany

Personalised recommendations