Journal of Combinatorial Optimization

, Volume 26, Issue 1, pp 19–43

Parameterized complexity of k-anonymity: hardness and tractability

  • Paola Bonizzoni
  • Gianluca Della Vedova
  • Riccardo Dondi
  • Yuri Pirola
Article
  • 147 Downloads

Abstract

The problem of publishing personal data without giving up privacy is becoming increasingly important. A precise formalization that has been recently proposed is the k-anonymity, where the rows of a table are partitioned into clusters of sizes at least k and all rows in a cluster become the same tuple after the suppression of some entries. The natural optimization problem, where the goal is to minimize the number of suppressed entries, is hard even when the stored values are over a binary alphabet or the table consists of a bounded number of columns. In this paper we study how the complexity of the problem is influenced by different parameters. First we show that the problem is W[1]-hard when parameterized by the value of the solution (and k). Then we exhibit a fixed-parameter algorithm when the problem is parameterized by the number of columns and the number of different values in any column. Finally, we prove that k-anonymity is still APX-hard even when restricting to instances with 3 columns and k=3.

Keywords

Anonymity Fixed-parameter complexity Approximation algorithms Hardness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal G, Feder T, Kenthapadi K, Motwani R, Panigrahy R, Thomas D, Zhu A (2005) Anonymizing tables. In: Eiter T, Libkin L (eds) ICDT. Lecture Notes in Computer Science, vol 3363. Springer, Berlin, pp 246–258 Google Scholar
  2. Aggarwal G, Kenthapadi K, Motwani R, Panigrahy R, Thomas D, Zhu A (2005) Approximation algorithms for k-anonymity. J Priv Technol Google Scholar
  3. Aggarwal G, Panigrahy R, Feder T, Thomas D, Kenthapadi K, Khuller S, Zhu A (2010) Achieving anonymity via clustering. ACM Trans Algorithms 6(3) Google Scholar
  4. Alimonti P, Kann V (2000) Some APX-completeness results for cubic graphs. Theor Comput Sci 237(1–2):123–134 MathSciNetMATHCrossRefGoogle Scholar
  5. Alt H, Blum N, Mehlhorn K, Paul M (1991) Computing a maximum cardinality matching in a bipartite graph in time \(o(n^{1}0.5 \sqrt{m}/\log n)\). Inf Process Lett 37(4):237–240 MathSciNetMATHCrossRefGoogle Scholar
  6. Ausiello G, Crescenzi P, Gambosi G, Kann V, Marchetti-Spaccamela A, Protasi M (1999) Complexity and approximation: combinatorial optimization problems and their approximability properties. Springer, Berlin MATHGoogle Scholar
  7. Blocki J, Williams R (2010) Resolving the complexity of some data privacy problems. In: Abramsky S, Gavoille C, Kirchner C, auf der Heide FM, Spirakis PG (eds) Automata, languages and programming. 37th international colloquium, ICALP 2010, Proceedings of Part II, Bordeaux, France, July 6–10, 2010, LNCS, vol 6199. Springer, Berlin, pp 393–404 Google Scholar
  8. Bonizzoni P, Della Vedova G, Dondi R (2011) Anonymizing binary and small tables is hard to approximate. J Comb Optim 22(1):97–119 MathSciNetMATHCrossRefGoogle Scholar
  9. Diestel R (2005) Graph theory. Graduate texts in mathematics, vol 173, 3rd edn. Springer, Heidelberg MATHGoogle Scholar
  10. Downey RG, Fellows MR (1995) Fixed-parameter tractability and completeness ii: on completeness for W[1]. Theor Comput Sci 141(1&2):109–131 MathSciNetMATHCrossRefGoogle Scholar
  11. Downey R, Fellows M (1999) Parameterized complexity. Springer, Berlin CrossRefGoogle Scholar
  12. Du W, Eppstein D, Goodrich MT, Lueker GS (2009) On the approximability of geometric and geographic generalization and the min-max bin covering problem. In: Dehne FKHA, Gavrilova ML, Sack JR, Tóth CD (eds) WADS. Lecture notes in computer science, vol 5664. Springer, Berlin, pp 242–253 Google Scholar
  13. Evans PA, Wareham T, Chaytor R (2009) Fixed-parameter tractability of anonymizing data by suppressing entries. J Comb Optim 18(4):362–375 MathSciNetMATHCrossRefGoogle Scholar
  14. Frank A, Asuncion A (2010) UCI machine learning repository. http://archive.ics.uci.edu/ml
  15. Gionis A, Tassa T (2009) k-anonymization with minimal loss of information. IEEE Trans Knowl Data Eng 21(2):206–219 CrossRefGoogle Scholar
  16. Meyerson A, Williams R (2004) On the complexity of optimal k-anonymity. In: Deutsch A (ed) PODS. ACM, New York, pp 223–228 CrossRefGoogle Scholar
  17. Niedermeier R (2006) Invitation to fixed-parameter algorithms. Oxford University Press, London MATHCrossRefGoogle Scholar
  18. Park H, Shim K (2010) Approximate algorithms with generalizing attribute values for k-anonymity. Inf Syst 35(8):933–955 CrossRefGoogle Scholar
  19. Samarati P (2001) Protecting respondents’ identities in microdata release. IEEE Trans Knowl Data Eng 13(6):1010–1027 CrossRefGoogle Scholar
  20. Samarati P, Sweeney L (1998) Generalizing data to provide anonymity when disclosing information (abstract). In: PODS. ACM, New York, p 188 Google Scholar
  21. Sweeney L (2002) k-anonymity: a model for protecting privacy. Int J Uncertain Fuzziness Knowl-Based Syst 10(5):557–570 MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Paola Bonizzoni
    • 1
  • Gianluca Della Vedova
    • 2
  • Riccardo Dondi
    • 3
  • Yuri Pirola
    • 1
  1. 1.DISCoUniv. Milano-BicoccaMilanoItaly
  2. 2.Dip. StatisticaUniv. Milano-BicoccaMilanoItaly
  3. 3.Dipartimento di Scienze dei Linguaggi, della Comunicazione e degli Studi CulturaliUniversità degli Studi di BergamoBergamoItaly

Personalised recommendations