Journal of Combinatorial Optimization

, Volume 22, Issue 4, pp 572–593 | Cite as

Revised GRASP with path-relinking for the linear ordering problem

  • W. Art Chaovalitwongse
  • Carlos A. S. Oliveira
  • Bruno Chiarini
  • Panos M. Pardalos
  • Mauricio G. C. Resende
Article

Abstract

The linear ordering problem (LOP) is an \(\mathcal{NP}\)-hard combinatorial optimization problem with a wide range of applications in economics, archaeology, the social sciences, scheduling, and biology. It has, however, drawn little attention compared to other closely related problems such as the quadratic assignment problem and the traveling salesman problem. Due to its computational complexity, it is essential in practice to develop solution approaches to rapidly search for solution of high-quality. In this paper we propose a new algorithm based on a greedy randomized adaptive search procedure (GRASP) to efficiently solve the LOP. The algorithm is integrated with a Path-Relinking (PR) procedure and a new local search scheme. We tested our implementation on the set of 49 real-world instances of input-output tables (LOLIB instances) proposed in Reinelt (Linear ordering library (LOLIB) 2002). In addition, we tested a set of 30 large randomly-generated instances proposed in Mitchell (Computational experience with an interior point cutting plane algorithm, Tech. rep., Mathematical Sciences, Rensellaer Polytechnic Institute, Troy, NY 12180-3590, USA 1997). Most of the LOLIB instances were solved to optimality within 0.87 seconds on average. The average gap for the randomly-generated instances was 0.0173% with an average running time of 21.98 seconds. The results indicate the efficiency and high-quality of the proposed heuristic procedure.

Keywords

Linear ordering problem Heuristic GRASP Path-relinking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belloni A, Lucena A (2004) Lagrangian heuristics for the linear ordering problem, pp 37–63 Google Scholar
  2. Bolotashvili G, Kovalev M, Girlich E (1999) New facets of the linear ordering polytope. SIAM J Discrete Math 12:326–336 MathSciNetMATHCrossRefGoogle Scholar
  3. Burkard RE, Çela E, Pardalos PM, Pitsoulis LS (1998) The quadratic assignment problem. In: Pardalos PM, Du D-Z (eds) Handbook of combinatorial optimization. Kluwer Academic, Dordrecht, pp 241–338 Google Scholar
  4. Campos V, Laguna M, Martí R (1998) Scatter search for the linear ordering problem. Tech rep, Graduate School of Business, University of Colorado, Boulder, CO 80309, USA Google Scholar
  5. Campos V, Glover F, Laguna M, Martí R (2001) An experimental evaluation of a scatter search for the linear ordering problem. J Glob Optim 21:397–414 MATHCrossRefGoogle Scholar
  6. Campos V, Laguna M, Martí R (2005) Context-independent scatter and tabu search for permutation problems. INFORMS J Comput 17:111–122 MathSciNetCrossRefGoogle Scholar
  7. Chanas S, Kobylański P (1996) A new heuristic algorithm solving the linear ordering problem. Comput Optim Appl 6:191–205 MathSciNetMATHGoogle Scholar
  8. Chaovalitwongse W, Kim D-K, Pardalos PM (2003) Grasp with a new local search scheme for vehicle routing problems with time windows. J Combin Optim 7:179–207 MathSciNetMATHCrossRefGoogle Scholar
  9. Chenery HB, Watanabe T (1958) International comparisons of the structure of production. Econometrica 26:487–521 CrossRefGoogle Scholar
  10. Chiarini B, Chaovalitwongse W, Pardalos PM (2004) A new algorithm for the triangulation of input-output tables. In: Migdalas A, Pardalos PM, Baourakis G (eds) Supply chain and finance. World Scientific, Singapore, pp 254–273 Google Scholar
  11. Christof T, Reinelt G (1997) Low-dimensional linear ordering polytopes Google Scholar
  12. Even G, Naor J, Rao S, Schieber B (2000) Divide-and-conquer approximation algorithms via spreading metrics. J ACM 47:585–616 MathSciNetCrossRefGoogle Scholar
  13. Feo TA, Resende MGC (1995) Greedy randomized adaptive search procedures. J Glob Optim 2:1–27 MathSciNetGoogle Scholar
  14. Festa P, Resende MGC (2000) GRASP: An annotated bibliography. Tech rep, AT&T Labs Research, Florham Park, NJ 07733, USA Google Scholar
  15. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. Freeman, New York MATHGoogle Scholar
  16. Glover F, Laguna M (1997) Tabu search. Kluwer Academic, Dordrecht MATHCrossRefGoogle Scholar
  17. Goemans MX, Williamson DP (1995) Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J ACM 42:1115–1145 MathSciNetMATHCrossRefGoogle Scholar
  18. González CG, Pérez-Brito D (2001) A variable neighborhood search for solving the linear ordering problem. In: Proceedings of the MIC’2001-4th metaheuristics international conference, pp 181–185 Google Scholar
  19. Greistorfer P (2004) Experimental pool design: input, output and combination strategies for scatter search, pp 279–300 Google Scholar
  20. Grötschel M, Jünger M, Reinelt G (1984) A cutting plane algorithm for the linear ordering problem. Oper Res 2:1195–1220 CrossRefGoogle Scholar
  21. Grötschel M, Jünger M, Reinelt G (1985) Facets of the linear ordering polytope. Math Programm 33:43–60 MATHCrossRefGoogle Scholar
  22. Hansen M (1989) Approximation algorithms for geometric embeddings in the plane with applications to parallel processing problems. In: Proceedings of the 30th annual symposium on foundations of computer science. IEEE Comput Soc, Los Alamitos, pp 604–609 CrossRefGoogle Scholar
  23. Huang G, Lim A (2003) Designing a hybrid genetic algorithm for the linear ordering problem. In: Cantú-Paz E, Foster JA, Deb K et al. (eds) Lecture notes in computer science, vol 2723. Springer, Berlin, pp 1053–1064 Google Scholar
  24. Jünger M (1985) Polyhedral combinatorics and the acyclic subdigraph problem. Research and Exposition in Mathematics, vol 7. Heldermann, Berlin MATHGoogle Scholar
  25. Laguna M, Martí R (1998) GRASP and path relinking for 2-layer straight line crossing minimization. INFORMS J Comput 11:44–52 CrossRefGoogle Scholar
  26. Laguna M, Martí R, Campos V (1999) Intensification and diversification with elite tabu search solutions for the linear ordering problem. Comput Oper Res 26:1217–1230 MATHCrossRefGoogle Scholar
  27. Lee G, Lo S-C, Chen ALP (2002) Data allocation on wireless broadcast channels for efficient query processing. IEEE Trans Comput 51:1237–1252 MathSciNetCrossRefGoogle Scholar
  28. Leontief W (1986) Input-output economics. Oxford University Press, London Google Scholar
  29. Leung J, Lee J (1994) More facets from fences for linear ordering and acyclic subgraphs polytopes. Discrete Appl Math 50:185–200 MathSciNetMATHCrossRefGoogle Scholar
  30. Martí R (2003) Multi-start methods. In: Glover F, Kochenberger GA (eds) Handbook of metaheuristics. International series in operations research & management sciences. Kluwer Academic, Dordrecht, pp 355–368, Chap 12 Google Scholar
  31. Mitchell JE (1997) Computational experience with an interior point cutting plane algorithm. Tech rep, Mathematical Sciences, Rensellaer Polytechnic Institute, Troy, NY 12180-3590, USA Google Scholar
  32. Mitchell JE (2002) Generating linear ordering problems. http://www.rpi.edu/~mitchj/generators/linord
  33. Mitchell JE, Borchers B (2000) Solving linear ordering problems with a combined interior point/simplex cutting plane algorithm. In: Frenk H et al. (eds) High performance optimization. Kluwer Academic, Dordrecht, pp 345–366, Chap 14. http://www.rpi.edu/mitchj/papers/combined.html Google Scholar
  34. Newman A (2000) Approximating the maximum acyclic subgraph. Master’s thesis, Massachusetts Institute of Technology Google Scholar
  35. Newman A (2004) Cuts and orderings: On semidefinite relaxations for the linear ordering problem. In: Jansen K, Khanna S, Rolim JDP, Ron D (eds) Lecture notes in computer science, vol 3122. Springer, Berlin, pp 195–206 Google Scholar
  36. Newman A, Vempala S (2001) Fences are futile: on relaxations for the linear ordering problem. In: Proceedings of the eighth conference on integer programming and combinatorial optimization (IPCO), pp 333–347 Google Scholar
  37. Rao S, Richa AW (2004) New approximation techniques for some linear ordering problems. SIAM J Comput 34:388–404 MathSciNetMATHCrossRefGoogle Scholar
  38. Reinelt G (1985) The linear ordering problem: algorithms and applications. Research and exposition in mathematics, vol 8. Heldermann, Berlin MATHGoogle Scholar
  39. Reinelt G (1993) A note on small linear ordering polytope. Discrete Comput Geom 10:67–78 MathSciNetMATHCrossRefGoogle Scholar
  40. Reinelt G (2002) Linear ordering library (LOLIB). http://www.iwr.uni-heildelberg.de/iwr/comopt/soft/LOLIB/LOLIB.html

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • W. Art Chaovalitwongse
    • 1
  • Carlos A. S. Oliveira
    • 2
  • Bruno Chiarini
    • 3
  • Panos M. Pardalos
    • 4
  • Mauricio G. C. Resende
    • 5
  1. 1.Department of Industrial and Systems EngineeringRutgers UniversityPiscatawayUSA
  2. 2.Princeton Consultants Inc.PrincetonUSA
  3. 3.MiamiUSA
  4. 4.Department of Industrial and Systems EngineeringUniversity of FloridaGainesvilleUSA
  5. 5.AT&T Labs ResearchFlorham ParkUSA

Personalised recommendations