Journal of Combinatorial Optimization

, Volume 24, Issue 1, pp 32–51 | Cite as

Minimum covering with travel cost

  • Sándor P. Fekete
  • Joseph S. B. Mitchell
  • Christiane Schmidt


Given a polygon and a visibility range, the Myopic Watchman Problem with Discrete Vision (MWPDV) asks for a closed path P and a set of scan points \(\mathcal{S}\), such that (i) every point of the polygon is within visibility range of a scan point; and (ii) path length plus weighted sum of scan number along the tour is minimized. Alternatively, the bicriteria problem (ii′) aims at minimizing both scan number and tour length. We consider both lawn mowing (in which tour and scan points may leave P) and milling (in which tour, scan points and visibility must stay within P) variants for the MWPDV; even for simple special cases, these problems are NP-hard.

We show that this problem is NP-hard, even for the special cases of rectilinear polygons and L scan range 1, and negligible small travel cost or negligible travel cost. For rectilinear MWPDV milling in grid polygons we present a 2.5-approximation with unit scan range; this holds for the bicriteria version, thus for any linear combination of travel cost and scan cost. For grid polygons and circular unit scan range, we describe a bicriteria 4-approximation. These results serve as stepping stones for the general case of circular scans with scan radius r and arbitrary polygons of feature size a, for which we extend the underlying ideas to a \(\pi(\frac{r}{a}+\frac{r+1}{2})\) bicriteria approximation algorithm. Finally, we describe approximation schemes for MWPDV lawn mowing and milling of grid polygons, for fixed ratio between scan cost and travel cost.


Covering Minimum Watchman Problem Limited visibility Lawn mowing Bicriteria problems Approximation algorithm PTAS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alt H, Arkin EM, Brönnimann H, Erickson J, Fekete SP, Knauer C, Lenchner J, Mitchell JSB, Whittlesey K (2006) Minimum-cost coverage of point sets by disks. In: Proc. 22nd ACM symposium on computational geometry, pp 449–458 Google Scholar
  2. Amit Y, Mitchell JSB, Packer E (2010) Locating guards for visibility coverage of polygons. Int J Comput Geom Appl (to appear) Google Scholar
  3. Arkin EM, Fekete SP, Mitchell JSB (2000) Approximation algorithms for lawn mowing and milling. Comput Geom Theory Appl 17(1–2):25–50 MathSciNetzbMATHCrossRefGoogle Scholar
  4. Baumgartner T, Fekete SP, Kröller A, Schmidt C (2010) Exact solutions and bounds for general art gallery problems. In: Proc. SIAM-ACM workshop on algorithm engineering and experiments (ALENEX 2010) Google Scholar
  5. Baur C, Fekete SP (2001) Approximation of geometric dispersion problems. Algorithmica 30(3):451–470 MathSciNetzbMATHCrossRefGoogle Scholar
  6. Bhattacharya A, Ghosh SK, Sarkar S (2001) Exploring an unknown polygonal environment with bounded visibility. In: International conference on computational science (1). LNCS, vol 2073. Springer, Berlin, pp 640–648 Google Scholar
  7. Chin W-P, Ntafos S (1988) Optimum watchman routes. In: Proc 2nd ACM Symposium on Computational Geometry, vol. 28(1), pp 39–44 Google Scholar
  8. Chin W-P, Ntafos SC (1991) Shortest watchman routes in simple polygons. Discrete Comput Geom 6:9–31 MathSciNetzbMATHCrossRefGoogle Scholar
  9. Dumitrescu A, Mitchell JSB (2003) Approximation algorithms for TSP with neighborhoods in the plane. J Algorithms 48(1):135–159 MathSciNetzbMATHCrossRefGoogle Scholar
  10. Efrat A, Har-Peled S (2006) Guarding galleries and terrains. Inf Process Lett 100(6):238–245 MathSciNetzbMATHCrossRefGoogle Scholar
  11. Fekete SP, Schmidt C (2008) Polygon exploration with discrete vision. In: CoRR, 0807.2358
  12. Fekete SP, Schmidt C (2009) Low-cost tours for nearsighted watchmen with discrete vision. In: 25th European workshop on computational geometry, pp 171–174 Google Scholar
  13. Fekete SP, Schmidt C (2010) Polygon exploration with time-discrete vision. Comput Geom Theory Appl 43(2):148–168 MathSciNetzbMATHCrossRefGoogle Scholar
  14. Fekete SP, Mitchell JSB, Schmidt C (2009) Minimum covering with travel cost. In: Proc. 20th international symposium on algorithms and computation. Lecture notes in computer science, vol 5878. Springer, Berlin, pp 393–402 Google Scholar
  15. Hochbaum DS, Maass W (1985) Approximation schemes for covering and packing problems in image processing and vlsi. J ACM 32(1):130–136 MathSciNetzbMATHCrossRefGoogle Scholar
  16. Itai A, Papadimitriou CH, Szwarcfiter JL (1982) Hamilton paths in grid graphs. SIAM J Comput 11(4):676–686 MathSciNetzbMATHCrossRefGoogle Scholar
  17. Kershner R (1939) The number of circles covering a set. Am J Math 61:665–667 MathSciNetCrossRefGoogle Scholar
  18. Mitchell JSB (1999) Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. SIAM J Comput 28:1298–1309 MathSciNetzbMATHCrossRefGoogle Scholar
  19. Mitchell JSB (2007) A PTAS for TSP with neighborhoods among fat regions in the plane. In: Proc. 18th annual ACM-SIAM symposium on discrete algorithms, pp 11–18 Google Scholar
  20. O’Rourke J (1987) Art gallery theorems and algorithms. International series of monographs on computer science. Oxford University Press, New York zbMATHGoogle Scholar
  21. Rosenstiehl P, Tarjan RE (1986) Rectilinear planar layouts and bipolar orientations of planar graphs. Discrete Comput Geom 1:343–353 MathSciNetzbMATHCrossRefGoogle Scholar
  22. Tóth LF (1949) Über dichteste Kreislagerung und dünnste Kreisüberdeckung. Comment Math Helv 23(1):342–349 MathSciNetzbMATHCrossRefGoogle Scholar
  23. Wagner IA, Lindenbaum M, Bruckstein AM (2000) MAC vs. PC: Determinism and randomness as complementary approaches to robotic exploration of continuous unknown domains. Int J Robotics Res 19(1):12–31 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Sándor P. Fekete
    • 2
  • Joseph S. B. Mitchell
    • 1
  • Christiane Schmidt
    • 2
  1. 1.Department of Applied Mathematics and StatisticsStony Brook UniversityStony BrookUSA
  2. 2.Algorithms GroupBraunschweig Institute of TechnologyBraunschweigGermany

Personalised recommendations