Journal of Combinatorial Optimization

, Volume 22, Issue 4, pp 517–530

The Maximum Box Problem for moving points in the plane

  • S. Bereg
  • J. M. Díaz-Báñez
  • P. Pérez-Lantero
  • I. Ventura
Article

Abstract

Given a set R of r red points and a set B of b blue points in the plane, the static version of the Maximum Box Problem is to find an isothetic box H such that HR= and the cardinality of HB is maximized. In this paper, we consider a kinetic version of the problem where the points in RB move along bounded degree algebraic trajectories. We design a compact and local quadratic-space kinetic data structure (KDS) for maintaining the optimal solution in O(rlog r+rlog b+b) time per each event. We also give an algorithm for solving the more general static problem where the maximum box can be arbitrarily oriented. This is an open problem in Aronov and Har-Peled (SIAM J. Comput. 38:899–921, 2008). We show that our approach can be used to solve this problem in O((r+b)2(rlog r+rlog b+b)) time. Finally we propose an efficient data structure to maintain an approximated solution of the kinetic Maximum Box Problem.

Keywords

Pattern recognition Maximum Box Problem Kinetic data structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aronov B, Har-Peled S (2008) On approximating the depth and related problems. SIAM J Comput 38:899–921 MathSciNetMATHCrossRefGoogle Scholar
  2. Bonnet P, Gehrke J, Seshadri P (2001) Towards sensor database systems. In: Proc of the second international conf on mobile data management, Hong Kong. Lecture notes comp sci, vol 1987, pp 3–14 Google Scholar
  3. Chazelle B, Guibas LJ (1986) Fractional cascading: a data structuring technique. Algorithmica 1:133–162 MathSciNetMATHCrossRefGoogle Scholar
  4. Civilis A, Jensen CS, Pakalnis S (2005) Techniques for efficient road-network-based tracking of moving objects. IEEE Trans Knowl Data Eng 17(5):698–712 CrossRefGoogle Scholar
  5. Cormen TH, Leiserson CE, Rivest RL (2001) Introduction to algorithms, 2nd edn. MIT Press, Cambridge MATHGoogle Scholar
  6. Cortés C, Díaz-Báñez JM, Pérez-Lantero P, Seara C, Urrutia J, Ventura I (2009) Bichromatic separability with two boxes: a general approach. J Algorithms, Cogn, Inf Log 64(2–3):79–88 MATHGoogle Scholar
  7. Duda R, Hart P, Stork D (2001) Pattern classification. Wiley, New York MATHGoogle Scholar
  8. Guibas LJ (1998) Kinetic data structures: a state of the art report. In: Robotics: the algorithmic perspective. AK Peters, Wellesley, pp 191–209 Google Scholar
  9. Liu Y, Nediak M (2003) Planar case of the Maximum Box and related problems. In: Proc Canad conf comp geom, Halifax, Nova Scotia, August 11–13 (2003) Google Scholar
  10. Segal M (2004) Planar Maximum Box Problem. J Math Modeling Algorithms 3:31–38 MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • S. Bereg
    • 1
  • J. M. Díaz-Báñez
    • 2
  • P. Pérez-Lantero
    • 2
  • I. Ventura
    • 2
  1. 1.Department of Computer ScienceUniversity of Texas at DallasRichardsonUSA
  2. 2.Departamento de Matemática Aplicada IIUniversidad de SevillaSevillaSpain

Personalised recommendations