Advertisement

Journal of Combinatorial Optimization

, Volume 22, Issue 2, pp 180–201 | Cite as

A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem

  • José Fernando Gonçalves
  • Mauricio G. C. Resende
Article

Abstract

This paper addresses a constrained two-dimensional (2D), non-guillotine restricted, packing problem, where a fixed set of small rectangles has to be placed into a larger stock rectangle so as to maximize the value of the rectangles packed. The algorithm we propose hybridizes a novel placement procedure with a genetic algorithm based on random keys. We propose also a new fitness function to drive the optimization. The approach is tested on a set of instances taken from the literature and compared with other approaches. The experimental results validate the quality of the solutions and the effectiveness of the proposed algorithm.

Keywords

Packing Cutting Two-dimensional packing Two-dimensional cutting Non-guillotine cutting Genetic algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez-Valdes R, Parreño F, Tamarit J (2005) A GRASP algorithm for constrained two-dimensional non-guillotine cutting problems. J Oper Res Soc 56:414–425 zbMATHCrossRefGoogle Scholar
  2. Alvarez-Valdes R, Parreño F, Tamarit J (2007) A tabu search algorithm for a two-dimensional non-guillotine cutting problem. Eur J Oper Res 183:1167–1182 zbMATHCrossRefGoogle Scholar
  3. Amaral A, Letchford AN (2001) An improved upper bound for the two-dimensional non-guillotine cutting problem. Technical report, Lancaster University, UK. Available online at http://www.lancs.ac.uk/staff/letchfoa/ngc.doc
  4. Arenales M, Morabito R (1995) An and/or-graph approach to the solution of two dimensional guillotine cutting problems. Eur J Oper Res 84:599–617 zbMATHCrossRefGoogle Scholar
  5. Bean JC (1994) Genetics and random keys for sequencing and optimization. ORSA J Comput 6:154–160 zbMATHCrossRefGoogle Scholar
  6. Beasley JE (1985) An exact two-dimensional non-guillotine cutting tree search procedure. Oper Res 33:49–64 MathSciNetzbMATHCrossRefGoogle Scholar
  7. Beasley JE (2004) A population heuristic for constrained two-dimensional non-guillotine cutting. Eur J Oper Res 156:601–627 MathSciNetzbMATHCrossRefGoogle Scholar
  8. Boschetti MA, Hadjiconstantinou E, Mingozzi A (2002) New upper bounds for the two-dimensional orthogonal non-guillotine cutting stock problem. IMA J Manag Math 13:95–119 MathSciNetzbMATHCrossRefGoogle Scholar
  9. Buriol LS, Resende MGC, Ribeiro CC, Thorup M (2005) A hybrid genetic algorithm for the weight setting problem in OSPF/IS-IS routing. Networks 46:36–56 MathSciNetzbMATHCrossRefGoogle Scholar
  10. Buriol LS, Resende MGC, Thorup M (2007) Survivable IP network design with OSPF routing. Networks 49:51–64 MathSciNetzbMATHCrossRefGoogle Scholar
  11. Caprara A, Monaci M (2004) On the 2-dimensional knapsack problem. Oper Res Lett 32:5–14 MathSciNetzbMATHCrossRefGoogle Scholar
  12. Christofides N, Whitlock C (1977) An algorithm for two dimensional cutting problems. Oper Res 25:31–44 CrossRefGoogle Scholar
  13. Dowsland KA, Dowsland WB (1992) Packing problems. Eur J Oper Res 56:2–14 zbMATHCrossRefGoogle Scholar
  14. Dyckhoff H (1990) A typology of cutting and packing problems. Eur J Oper Res 44:145–159 MathSciNetzbMATHCrossRefGoogle Scholar
  15. Ericsson M, Resende MGC, Pardalos PM (2002) A genetic algorithm for the weight setting problem in OSPF routing. J Combin Optim 6:299–333 MathSciNetzbMATHCrossRefGoogle Scholar
  16. Fekete S, Schepers J (1997a) A new exact algorithm for general orthogonal d-dimensional knapsack problems. In: Algorithms—ESA ’97. Springer lecture notes in computer science, vol 1284. Springer, Berlin, pp 144–156 Google Scholar
  17. Fekete SP, Schepers J (1997b) On higher-dimensional packing I: Modeling. Technical Report ZPR 97-288, Mathematisches Institut, Universitat zu Köln Google Scholar
  18. Fekete SP, Schepers J (1997c) On higher-dimensional packing II: Bounds. Technical Report ZPR97-289, Mathematisches Institut, Universitat zu Köln Google Scholar
  19. Fekete SP, Schepers J (2004a) A combinatorial characterization of higher-dimensional orthogonal packing. Math Oper Res 29:353–368 MathSciNetzbMATHCrossRefGoogle Scholar
  20. Fekete SP, Schepers J (2004b) A general framework for bounds for higher-dimensional orthogonal packing problems. Math Methods Oper Res 60:311–329 MathSciNetzbMATHCrossRefGoogle Scholar
  21. Fekete SP, Schepers J (2004c) An exact algorithm for higher-dimensional orthogonal packing. Technical report, Mathematisches Institut, Universitat zu Köln. Working paper. Available online at http://www.math.tu-bs.de/~fekete
  22. Feo TA, Resende MGC (1989) A probabilistic heuristic for a computationally difficult set covering problem. Oper Res Lett 8:67–71 MathSciNetzbMATHCrossRefGoogle Scholar
  23. Feo TA, Resende MGC (1995) Greedy randomized adaptive search procedures. J Glob Optim 6:109–133 MathSciNetzbMATHCrossRefGoogle Scholar
  24. Garey M, Johnson D (1979) Computers and intractability: a guide to the theory of NP-completeness. Freeman, New York zbMATHGoogle Scholar
  25. Goldberg D (1989) Genetic algorithms in search optimization and machine learning. Addison-Wesley, Reading zbMATHGoogle Scholar
  26. Gonçalves JF (2007) A hybrid genetic algorithm-heuristic for a two-dimensional orthogonal packing problem. Eur J Oper Res 183:1212–1229 zbMATHCrossRefGoogle Scholar
  27. Gonçalves JF, Almeida JR (2002) A hybrid genetic algorithm for assembly line balancing. J Heuristics 8:629–642 CrossRefGoogle Scholar
  28. Gonçalves JF, Resende MGC (2004) An evolutionary algorithm for manufacturing cell formation. Comput Ind Eng 47:247–273 CrossRefGoogle Scholar
  29. Gonçalves JF, Resende MGC (2009) Biased random key genetic algorithms for combinatorial optimization. Technical report, AT&T Labs Research Technical Report, Florham Park, NJ 07733 USA Google Scholar
  30. Gonçalves JF, Mendes JJM, Resende MGC (2005) A hybrid genetic algorithm for the job shop scheduling problem. Eur J Oper Res 167:77–95 zbMATHCrossRefGoogle Scholar
  31. Hadjiconstantinou E, Christofides N (1995) An exact algorithm for general, orthogonal, two dimensional knapsack problems. Eur J Oper Res 83:39–56 zbMATHCrossRefGoogle Scholar
  32. Hadjiconstantinou E, Iori M (2007) A hybrid genetic algorithm for the two-dimensional knapsack problem. Eur J Oper Res 183:1150–1166 MathSciNetzbMATHCrossRefGoogle Scholar
  33. Haessler RW, Sweeney PE (1991) Cutting stock problems and solution procedures. Eur J Oper Res 54:141–150 zbMATHCrossRefGoogle Scholar
  34. Healy P, Creavin M, Kuusik A (1999) An optimal algorithm for rectangle placement. Oper Res Lett 24:73–80 MathSciNetzbMATHCrossRefGoogle Scholar
  35. Hopper E, Turton BCH (2001) An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem. Eur J Oper Res 128:34–57 zbMATHCrossRefGoogle Scholar
  36. Jakobs S (1996) On genetic algorithms for the packing of polygons. Eur J Oper Res 88:165–181 zbMATHCrossRefGoogle Scholar
  37. Lai KK, Chan JWM (1997a) An evolutionary algorithm for the rectangular cutting stock problem. Int J Ind Eng 4:130–139 Google Scholar
  38. Lai KK, Chan JWM (1997b) Developing a simulated annealing algorithm for the cutting stock problem. Comput Ind Eng 32:115–127 CrossRefGoogle Scholar
  39. Leung TW, Chan CK, Troutt MD (2001) Applications of genetic search and simulated annealing to the two-dimensional non-guillotine cutting stock problem. Comput Ind Eng 40:201–214 CrossRefGoogle Scholar
  40. Leung TW, Chan CK, Troutt MD (2003) Application of a mixed simulated annealing-genetic algorithm heuristic for the two-dimensional orthogonal packing problem. Eur J Oper Res 141:241–252 MathSciNetGoogle Scholar
  41. Liu D, Teng H (1999) An improved BL-algorithm for genetic algorithm of the orthogonal packing of rectangles. Eur J Oper Res 112:413–420 zbMATHCrossRefGoogle Scholar
  42. Scheithauer G, Terno J (1993) Modeling of packing problems. Optimization 28:63–84 MathSciNetzbMATHCrossRefGoogle Scholar
  43. Spears WM, Dejong KA (1991) On the virtues of parameterized uniform crossover. In: Proceedings of the fourth international conference on genetic algorithms, pp 230–236 Google Scholar
  44. Sweeney PE, Paternoster ER (1992) Cutting and packing problems: A categorized, application-orientated research bibliography. J Oper Res Soc 43:691–706 zbMATHGoogle Scholar
  45. Tsai RD, Malstrom EM, Meeks HD (1988) A two-dimensional palletizing procedure for warehouse loading operations. IIE Trans 20:418–425 CrossRefGoogle Scholar
  46. Wang PY (1983) Two algorithms for constrained two-dimensional cutting stock problems. Oper Res 31:573–586 zbMATHCrossRefGoogle Scholar
  47. Wäscher G, Haussner H, Schumann H (2007) An improved typology of cutting and packing problems. Eur J Oper Res 183:1109–1130 zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • José Fernando Gonçalves
    • 1
  • Mauricio G. C. Resende
    • 2
  1. 1.LIAADFaculdade de Economia do PortoPortoPortugal
  2. 2.Algorithms and Optimization Research DepartmentAT&T Labs ResearchFlorham ParkUSA

Personalised recommendations