Advertisement

Journal of Combinatorial Optimization

, Volume 21, Issue 3, pp 306–329 | Cite as

The k-coloring fitness landscape

  • Hend Bouziri
  • Khaled Mellouli
  • El-Ghazali Talbi
Article

Abstract

This paper deals with the fitness landscape analysis of the k-coloring problem. We study several standard instances extracted from the second DIMACS benchmark. Statistical indicators are used to investigate both global and local structure of fitness landscapes. An approximative distance on the k-coloring space is proposed to perform these statistical measures. Local search operator trajectories on various landscapes are then studied using the time series analysis. Results are used to better understand the behavior of metaheuristics based on local search when dealing with the graph coloring problem.

Keywords

k-coloring Fitness landscape Distance Distribution of solutions Time series 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angel E, Zissimopoulos V (1997) On the hardness of the quadratic assignment problem with metaheuristics. Technical Report, Laboratoire de Recherche en Informatique, University of Paris sud Google Scholar
  2. Bachelet V (1999) Métaheuristiques parallèles hybrides: Application au problème d’affectation quadratique. PhD Thesis, Université des Sciences et Technologies de Lille, France, December 1999 Google Scholar
  3. Boese KD (1995) Cost versus distance in the travelling salesman problem. Technical Report UCLA computer science department, Los Angeles Google Scholar
  4. Box GEP, Jenkins GM (1970) Time series analysis, forecasting and control, Holden Day Google Scholar
  5. Culberson J (1996) On the futility of blind search. Technical Report 96-19, Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada, July 1996 Google Scholar
  6. Culberson J (2000) Frozen development in graph coloring. Technical Report APES-19-2000, APES Research Group, February 2000 Google Scholar
  7. Desrosiers C, Galinier P, Hertz A (2004) Efficient Algorithms for Finding Critical Subgraphs. Les Cahiers de GERAD G-2004-31, April 2004 Google Scholar
  8. Fonlupt C, Robillard D, Preux P, Talbi EG (1999) Fitness landscape and performance of meta-heuristics. In: Voss S, Martello S, Osman I, Roucairol C (eds) Metaheuristics—advances and trends in local search paradigms for optimization. Kluwer Academic, Dordrecht, pp 255–266. Chapter 18 Google Scholar
  9. Galinier P (1999) Etude des métaheuristiques pour la résolution du problème de satisfaction de contraintes et de la coloration de graphes. Thèse de Doctorat de l’Université de Monpellier II, France, Janvier 1999 Google Scholar
  10. Galinier P, Hertz A (2004) A survey of local search methods for graph coloring. Les cahiers de GERAD G-2004-32, GERAD, Montréal Google Scholar
  11. Hamiez JP, Hao JK (2001) An analysis of solution properties of the graph coloring problem. In: Proc. MIC’2001, 4th metaheuristics international conference, Porto, Portugal, 16–20 July 2001 Google Scholar
  12. Hertz A, Jaumard B, de Aragao MP (1994) Local optima topology for the k-coloring problem. Discrete Appl Math 49:257–280 CrossRefzbMATHMathSciNetGoogle Scholar
  13. Hordijk W (1995) A measure of landscapes. Technical report 95-045-049, Santa Fe Institute, Santa Fe, New Mexico, USA, May 1995 Google Scholar
  14. Johnson DS, Trick MA (eds) (1993) Cliques, coloring, and satisfiability: 2nd DIMACS implementation challenge Google Scholar
  15. Jones T, Forrest S (1995) Fitness distance correlation as a measure of problem difficulty for genetic algorithms. Santa Fe Institute, Working Paper 95-02-022 Google Scholar
  16. Kuhn H (1956) Variants of the Hungarian method for assignment problems. Nav Res Logist Q 3:253–258 CrossRefGoogle Scholar
  17. Merz P, Freisleben B (2000) Fitness landscape analysis and memetic algorithms for the quadratic assignment problem. IEEE Trans Evol Comput 4(4):337–352 CrossRefGoogle Scholar
  18. Travares J, Pereira FB, Costa E (2008) Multidimentional knapsack problem: A fitness landscape analysis. IEEE Trans Syst Man Cybern, Part B 38(3):604–616 CrossRefGoogle Scholar
  19. Weinberg B (2004) Analyse et résolution approchée de problèmes d’optimisation combinatoire: application au problème de coloration de graphe. PhD Thesis, Université des Sciences et Technologies de Lille, France Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hend Bouziri
    • 1
  • Khaled Mellouli
    • 2
  • El-Ghazali Talbi
    • 3
  1. 1.LARODEC-ISG, ESSECTunisTunisia
  2. 2.LARODEC-ISG, IHECCarthageTunisia
  3. 3.LIFL, University of Lille 1, CNRS, INRIALilleFrance

Personalised recommendations