Advertisement

Journal of Combinatorial Optimization

, Volume 20, Issue 1, pp 63–75 | Cite as

Periodic complementary binary sequences and Combinatorial Optimization algorithms

  • I. S. Kotsireas
  • C. Koukouvinos
  • P. M. Pardalos
  • O. V. Shylo
Article

Abstract

We establish a new formalism for problems pertaining to the periodic autocorrelation function of finite sequences, which is suitable for Combinatorial Optimization methods. This allows one to bring to bear powerful Combinatorial Optimization methods in a wide array of problems that can be formulated via the periodic autocorrelation function. Using this new formalism we solve all remaining open problems regarding periodic complementary binary sequences, in the context of the Bömer and Antweiler diagram and thus complete the program that they started in 1990.

Keywords

Periodic complementary binary sequences Periodic Autocorrelation Function Combinatorial Optimization Algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bömer L, Antweiler M (1990) Periodic complementary binary sequences. IEEE Trans Inf Theory 36(6):1487–1494 zbMATHCrossRefGoogle Scholar
  2. Colbourn CJ, Dinitz JH (eds) (2007) Handbook of combinatorial designs. Discrete mathematics and its applications, 2nd edn. Chapman & Hall/CRC, Boca Raton zbMATHGoogle Scholar
  3. Fenimore E, Cannon T (1978) Coded aperture imaging with uniformly redundant arrays. Appl Opt 17:337–347 CrossRefGoogle Scholar
  4. Floudas CA, Pardalos PM (eds) (2001) Encyclopedia of optimization, vols I–VI. Kluwer Academic, Dordrecht zbMATHGoogle Scholar
  5. Glover F, Laguna M (1993) Tabu search. In: Reeves C (ed) Modern heuristic techniques for combinatorial problems. Blackwell, Oxford, pp 70–141 Google Scholar
  6. Golomb SW, Gong G (2005) Signal design for good correlation. For wireless communication, cryptography, and radar. Cambridge University Press, Cambridge zbMATHCrossRefGoogle Scholar
  7. Golomb S, Taylor H (1982) Two-dimensional synchronization patterns for minimum ambiguity. IEEE Trans Inf Theory 28:600–604 CrossRefMathSciNetGoogle Scholar
  8. Hersheya J, Yarlagadda R (1983) Two-dimensional synchronisation. Electron Lett 19:801–803 CrossRefGoogle Scholar
  9. Kotsireas IS, Koukouvinos C (2008) Periodic complementary binary sequences of length 50. Int J Appl Math 21:509–514 zbMATHMathSciNetGoogle Scholar
  10. Kotsireas IS, Koukouvinos C (2007) Hadamard ideals and Hadamard matrices from two circulant submatrices. J Comb Math Comb Comput 61:97–110 zbMATHMathSciNetGoogle Scholar
  11. Koukouvinos C (1996) Sequences with zero autocorrelation. In: Colbourn CJ, Dinitz JH (eds) The CRC handbook of combinatorial designs. CRC Press, Boca Raton. Part IV, Chap 42 Google Scholar
  12. Pardalos PM, Prokopyev OA, Shylo OV, Shylo VP (2008) Global equilibrium search applied to the unconstrained binary quadratic optimization problem. Optim Methods Softw 23(1):129–140 zbMATHCrossRefMathSciNetGoogle Scholar
  13. Pardalos PM, Rodgers GP (1990) Computational aspects of a branch and bound algorithm for quadratic zero-one programming. Computing 45:131–144 zbMATHCrossRefMathSciNetGoogle Scholar
  14. Stinson DR (2004) Combinatorial designs. Constructions and analysis. With a foreword by Charles J Colbourn. Springer, New York Google Scholar
  15. Weathers G, Holiday EM (1983) Group-complementary array coding for radar clutter rejection. IEEE Trans Aerosp Electron Syst 19:369–379 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • I. S. Kotsireas
    • 1
  • C. Koukouvinos
    • 2
  • P. M. Pardalos
    • 3
  • O. V. Shylo
    • 3
  1. 1.Department of Phys. & Comp. ScienceWilfrid Laurier UniversityWaterlooCanada
  2. 2.Department of MathematicsNational Technical University of AthensAthensGreece
  3. 3.Department of ISEUniversity of FloridaGainesvilleUSA

Personalised recommendations