Journal of Combinatorial Optimization

, Volume 16, Issue 4, pp 378–401 | Cite as

A nonlinear optimization methodology for VLSI fixed-outline floorplanning

Article

Abstract

Floorplanning is a critical step in the physical design of VLSI circuits. The floorplanning optimization problem can be formulated as a global optimization problem minimizing wire length, with the area of each rectangular module fixed while the module’s height and width are allowed to vary subject to aspect ratio constraints. While classical floorplanning seeks to simultaneously minimize the wire length and the area of the floorplan without being constrained by a fixed outline for the floorplan, state-of-the-art technologies such as System-On-Chip require the solution of fixed-outline floorplanning. Fixing the outline of the floorplan makes the problem significantly more difficult. In this paper, we propose a two-stage nonlinear-optimization-based methodology specifically designed to perform fixed-outline floorplanning by minimizing wire length while simultaneously enforcing aspect ratio constraints on soft modules and handling a zero deadspace situation. In the first stage, a convex optimization globally minimizes an approximate measure of wire length. Using the solution of the first stage as a starting point, the second stage minimizes the wire length by sizing the modules subject to the prescribed aspect ratios, and ensuring no overlap. Computational results on standard benchmarks demonstrate that the model is competitive with other floorplanning approaches in the literature.

Keywords

Circuit layout design VLSI floorplanning Facility layout Combinatorial optimization Global optimization Convex programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adya SN, Markov IL (2003) Fixed-outline floorplanning: enabling hierarchical design. IEEE Trans Very Large Scale Integr (VLSI) Syst 11(6):1120–1135 CrossRefGoogle Scholar
  2. Anjos MF, Vannelli A (2002) An attractor-repeller approach to floorplanning. Math Methods Oper Res 56:3–27 MATHCrossRefMathSciNetGoogle Scholar
  3. Anjos MF, Vannelli A (2006) A new mathematical-programming framework for facility-layout design. INFORMS J Comput 18(1):111–118 CrossRefMathSciNetGoogle Scholar
  4. Brasen DR, Bushnell ML (1990) MHERTZ: A new optimization algorithm for floorplanning and global routing. In: Proc of ACM/IEEE Design Automation Conf, pp 107–110 Google Scholar
  5. Chen T, Fan MKH (1998) On convex formulation of the floorplan area minimization problem. In: Proc of ACM Intl Symp on Physical Design, pp 124–128 Google Scholar
  6. Chen P, Kuh ES (2000) Floorplan sizing by linear programming approximation. In: Proc of ACM/IEEE Design Automation Conf, pp 468–471 Google Scholar
  7. Choi S-G, Kyung C-M (1991) A floorplanning algorithm using rectangular Voronoi diagram and force-directed block shaping. In: Proc of IEEE/ACM Intl Conf on Computer-Aided Design, pp 56–59 Google Scholar
  8. Chu CCN, Young EFY (2004) Non-rectangular shaping and sizing of soft modules for floorplan design improvement. IEEE Trans Comput-Aided Des Integr Circuits Syst 23(1):71–79 CrossRefGoogle Scholar
  9. Cong J, Romesis M, Shinnerl J (2005) Fast floorplanning by look-ahead enabled recursive bipartioning. In: Proc of Asia and South Pacific Design Automation Conf, pp 1119–1122 Google Scholar
  10. Cong J, Romesis M, Shinnerl J (2005) Fast floorplanning by look-ahead enabled recursive bipartioning. Tech report Google Scholar
  11. Czyzyk J, Mesnier M, Moré J (1998) The NEOS server. IEEE J Comput Sci Eng 5:68–75 CrossRefGoogle Scholar
  12. Du Y, Vannelli A (1998) A nonlinear programming and local improvement method for standard cell placement. In: Proc of IEEE Custom Integrated Circuit Conf, pp 597–600 Google Scholar
  13. Eisenmann H, Johannes F (1998) Generic global placement and floorplanning. In: Proc of ACM/IEEE Design Automation Conf, pp 269–274 Google Scholar
  14. Etawil H, Areibi S, Vannelli A (1999) Attractor-repeller approach for global placement. In: Proc of IEEE/ACM Intl Conf on Computer-Aided Design, pp 20–24 Google Scholar
  15. Ferris M, Mesnier M, Moré J (2000) NEOS and condor: solving optimization problems over the internet. ACM Trans Math Softw 26(1):1–18 CrossRefGoogle Scholar
  16. Fourer R, Gay D, Kernighan B (2003) AMPL: A modeling language for mathematical programming. Brooks/Cole Publishing, Pacific Grove Google Scholar
  17. Gamal AAE (1981) Two-dimensional stochastic model for interconnections in master slice integrated circuits. IEEE Trans Circuits Syst 28:127–138 MATHCrossRefGoogle Scholar
  18. Hamada T, Cheng CK, Chau PM (1996) A wire length estimation technique utilizing neighborhood density equations. IEEE Trans Comput-Aided Des 15:912–922 CrossRefGoogle Scholar
  19. Hebgen W, Zimmermann G (1996) Hierarchical netlength estimation for timing prediction. In: Proc of Physical Design Workshop, pp 118–125 Google Scholar
  20. Herrigel A, Fichtner W (1989) An analytic optimization technique for placement of macro-cells. In: Proc of ACM/IEEE Design Automation Conf, pp 376–381 Google Scholar
  21. Ho S-Y, Ho S-J, Lin Y-K, Chu WC-C (2004) An orthogonal simulated annealing algorithm for large floorplanning problems. IEEE Trans Very Large Scale Integr (VLSI) Syst 12(8):874–877 CrossRefGoogle Scholar
  22. Hur SW, Lillis J (1999) Relaxation and clustering in a local search framework: Application to linear placement. In: Proc of ACM/IEEE Design Automation Conf, pp 360–366 Google Scholar
  23. Jackson MAB, Kuh ES (1989) Performance-driven placement of cell based IC’s. In: Proc of ACM/IEEE Design Automation Conf, pp 370–375 Google Scholar
  24. Kahng AB (2000) Classical floorplanning harmful? In: Proc of ACM Intl Symp on Physical Design, pp 207–213 Google Scholar
  25. Kennings A, Markov I (2000) Analytical minimization of half-perimeter wirelength. In: Proc of Asia and South Pacific Design Automation Conf, pp 179–184 Google Scholar
  26. Kim J-G, Kim Y-D (2003) A linear programming-based algorithm for floorplanning in VLSI design. IEEE Trans Comput-Aided Des Integr Circuits Syst 2(5):584–592 Google Scholar
  27. Kleinhans J, Sigl G, Johannes F, Antreich K (1991) Gordian: VLSI placement by quadratic programming and slicing optimization. IEEE Trans Comput-Aided Des 10(3):356–365 CrossRefGoogle Scholar
  28. Lai Y, Leinwand SM (1988) Algorithms for floorplan design via rectangular dualization. IEEE Trans Comput-Aided Des 7(12):1278–1289 CrossRefGoogle Scholar
  29. MCNC (2004) http://www.cse.ucsc.edu/research/surf/gsrc/mcncbench.html. MCNC Floorplan Benchmark Suite, University of California, Santa Cruz
  30. Mogaki M, Miura C, Terai H (1987) Algorithm for block placement with size optimization technique by the linear programming approach. In: Proc of IEEE/ACM Intl Conf on Computer-Aided Design, pp 80–83 Google Scholar
  31. Moh T-S, Chang T-S, Hakimi SL (1996) Globally optimal floorplanning for a layout problem. IEEE Trans Circuits Syst 43(9):713–720 CrossRefMathSciNetGoogle Scholar
  32. Murata H, Kuh ES (1998) Sequence-pair based placement method for hard/soft/pre-placed modules. In: Proc of ACM Intl Symp on Physical Design, pp 167–172 Google Scholar
  33. Murata H, Fujiyoshi K, Nakatake S, Kajitani Y (1998) VLSI/PCB placement with obstacles based on sequence pair. IEEE Trans Comput-Aided Des 17(1):61–68 CrossRefGoogle Scholar
  34. Murtagh B, Saunders M (1978) Large-scale linearly constrained optimization. Math Program 14(1):41–72 MATHCrossRefMathSciNetGoogle Scholar
  35. Murtagh B, Saunders M (1982) A projected Lagrangian algorithm and its implementation for sparse nonlinear constraints. Math Program Stud 16:84–117 MATHMathSciNetGoogle Scholar
  36. Murtagh B, Saunders M (1983) MINOS 5.0 user’s guide. Tech Report SOL 83-20, Department of Operations Research, Stanford University. Revised as MINOS 5.1 user’s guide, Report SOL 83-20R, 1987 Google Scholar
  37. Onodera H, Taniguchi Y, Tamaru K (1991) Branch-and-bound placement for building block layout. In: Proc of ACM/IEEE Design Automation Conf, pp 433–439 Google Scholar
  38. Pedram M, Preas B (1989) Interconnection length estimation for optimized standard cell layouts. In: Proc of IEEE/ACM Intl Conf on Computer-Aided Design, pp 390–393 Google Scholar
  39. Prasitjutrakul S, Kubitz WJ (1989) Path-delay constrained floorplanning: A mathematical programming approach for initial placement. In: Proc of ACM/IEEE Design Automation Conf, pp 364–369 Google Scholar
  40. Qi X, Feng Z, Yan X (1994) An algorithm of timing driven floorplanning for VLSI layout design. In: Proc of Intl Conf on Computer-Aided Drafting, Design and Manufacturing Technology, pp 642–646 Google Scholar
  41. Ranjan A, Bazargan K, Ogrenci S, Sarrafzadeh M (2001) Fast floorplanning for effective prediction and construction. IEEE Trans Very Large Scale Integr (VLSI) Syst 9(2):341–351 CrossRefGoogle Scholar
  42. Rosenberg E (1989) Optimal module sizing in VLSI floorplanning by nonlinear programming. Methods Models Oper Res 33:131–143 MATHCrossRefGoogle Scholar
  43. Sait SM, Youssef H (1995) VLSI physical design automation: theory and practice. IEEE Press, New York Google Scholar
  44. Sechen C (1988) VLSI placement and global routing using simulated annealing. Kluwer Academic, Norwell Google Scholar
  45. Sutanthavibul S, Shragowitz E, Rosen JB (1991) An analytical approach to floorplan design and optimization. IEEE Trans Comput-Aided Des Integr Circuits Syst 10(6):761–769 CrossRefGoogle Scholar
  46. Takouda PL, Anjos MF, Vannelli A (2005) Global lower bounds for the VLSI macrocell floorplanning problem using semidefinite optimization. In: Proc of the Fifth International Workshop System-on-Chip for Real-Time Applications, pp 275–280 Google Scholar
  47. Tang X, Tian R, Wong DF (2001) Fast evaluation of sequence pair in block placement by longest common subsequence computation. IEEE Trans Comput-Aided Des 20(12):1406–1413 CrossRefGoogle Scholar
  48. Vandenberghe L, Boyd S (1996) Semidefinite programming. SIAM Rev 38(1):49–95 MATHCrossRefMathSciNetGoogle Scholar
  49. Vygen J (1997) Algorithms for large-scale flat placement. In: Proc of ACM/IEEE Design Automation Conf, pp 746–751 Google Scholar
  50. Wang B, Chrzanowska-Jeske M, Jeske M (2003) Methods for efficient use of Lagrangian relaxation for soc soft-module floorplanning. In: Proc of IEEE Intl Conf on Systems-on-Chip, pp 293–294 Google Scholar
  51. Weis BX, Mlynski DA (1987) A new relative placement procedure based on MSST and linear programming. In: Proc of IEEE Intl Symp on Circuits and Systems, pp 564–567 Google Scholar
  52. Wimer S, Koren I, Cederbaum I (1988) Floorplans, planar graphs, and layouts. IEEE Trans Circuits Syst 35(3):267–278 MATHCrossRefMathSciNetGoogle Scholar
  53. Wimer S, Koren I, Cederbaum I (1989) Optimal aspect ratios of building blocks in VLSI. IEEE Trans Comput-Aided Des Integr Circuits Syst 8(2):139–145 CrossRefGoogle Scholar
  54. Wong DF, Liu CL (1986) A new algorithm for floorplan design. In: Proc of ACM/IEEE Design Automation Conf, pp 101–107 Google Scholar
  55. Wong DF, Liu CL (1989) Floorplan design of VLSI circuits. Algorithmica 4:263–291 MATHCrossRefMathSciNetGoogle Scholar
  56. Wong DF, Leong HW, Liu CL (1988) Simulated annealing for VLSI design. Kluwer Academic, Norwell MATHGoogle Scholar
  57. Ying C-S, Wong JS-L (1989) An analytical approach to floorplanning for hierarchical building blocks layout. IEEE Trans Comput-Aided Des 8(4):403–412 CrossRefGoogle Scholar
  58. Young FY, Wong DF, Yang HH (2000) Slicing floorplans with range constraint. IEEE Trans Comput-Aided Des Integr Circuits Syst 19(2):272–278 CrossRefGoogle Scholar
  59. Youssef H, Sait SM, Al-Farra KJ (1995) Timing influenced force directed floorplanning. In: Proc of Design Automation Conf with EURO-VHDL, pp 156–161 Google Scholar
  60. Zhan Y, Feng Y, Sapatnekar S (2006) A fixed-die floorplanning algorithm using an analytical approach. In: Proc of Asia and South Pacific Design Automation Conf, pp 771–776 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Chaomin Luo
    • 1
  • Miguel F. Anjos
    • 2
  • Anthony Vannelli
    • 1
    • 3
  1. 1.Department of Electrical & Computer EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.Department of Management SciencesUniversity of WaterlooWaterlooCanada
  3. 3.School of EngineeringUniversity of GuelphGuelphCanada

Personalised recommendations