Advertisement

Journal of Combinatorial Optimization

, Volume 14, Issue 2–3, pp 323–329 | Cite as

Packing 5-cycles into balanced complete m-partite graphs for odd m

  • Ming-Hway Huang
  • Chin-Mei FuEmail author
  • Hung-Lin Fu
Article

Abstract

Let \(K_{n_{1},n_{2},\ldots,n_{m}}\) be a complete m-partite graph with partite sets of sizes n 1,n 2,…,n m . A complete m-partite graph is balanced if each partite set has n vertices. We denote this complete m-partite graph by K m(n). In this paper, we completely solve the problem of finding a maximum packing of the balanced complete m-partite graph K m(n), m odd, with edge-disjoint 5-cycles and we explicitly give the minimum leaves.

Keywords

Complete m-partite graph Balanced complete m-partite graph 5-cycle Packing Leave Decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alspach B, Gavlas H (2001) Cycle decompositions of K n and K nI. J Comb Theory Ser B 81:77–99 zbMATHCrossRefGoogle Scholar
  2. Alspach B, Marshall S (1994) Even cycle decompositions of complete graphs minus a 1-factor. J Comb Des 2:441–458 zbMATHCrossRefGoogle Scholar
  3. Billington EJ, Fu H-L, Rodger CA (2001) Packing complete multipartite graphs with 4-cycles. J Comb Des 9:107–127 zbMATHCrossRefGoogle Scholar
  4. Billington EJ, Fu H-L, Rodger CA (2005) Packing λ-fold complete multipartite graphs with 4-cycles. Graphs Comb 21:169–185 zbMATHCrossRefGoogle Scholar
  5. Cavenagh NJ, Billington EJ (2000b) On decomposing complete tripartite graphs into 5-cycles. Australas J Comb 22:41–62 zbMATHGoogle Scholar
  6. Lindner CC, Rodger CA (1992) Decomposition into cycle II: cycle systems. In: Dinitz JH, Stinson DR (eds) Contemporary design theory: a collection of surveys. Wiley, New York, pp 325–369 Google Scholar
  7. Rosa A, Znám S (1994) Packing pentagons into complete graphs: how clumsy can you get. Discrete Math 128:305–316 zbMATHCrossRefGoogle Scholar
  8. Wilson RM (1974) Some partitions of all triples into Steiner triple systems. In: Lecture notes in mathematics, vol 411. Springer, Berlin, pp 267–277 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Computer Science and Information EngineeringYuanpei Institute of Science and TechnologyHsinchuTaiwan
  2. 2.Department of MathematicsTamkang UniversityTamsui, Taipei ShienTaiwan
  3. 3.Department of Applied MathematicsNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations