Advertisement

Optimized electrical bioimpedance measurements of abdominal wall on a porcine model for the continuous non-invasive assessment of intra-abdominal pressure

  • Marcelo DavidEmail author
  • Omer Amran
  • Aviad Peretz
  • Aviad Raviv
  • Francisco Pracca
Brief Communication
  • 7 Downloads

Abstract

This work describes the optimization of electrical bioimpedance measurements for indirect intra-abdominal pressure (IAP) assessment. The experimental run was performed on a female Sus scrofa domesticus (domestic pig). Different values of IAP were induced by inflation of the abdominal cavity, using a trocar placed near the umbilicus over the linea alba. The whole experiment was run within 1 h of the subject being sacrificed. The abdominal wall thickness was measured at an IAP of 5 mmHg. An exponential trend linking between the bioimpedance values at 99.8 kHz and the IAP was found. Non-optimized electrode placement presented a strongly reduced sensitivity to IAP changes above 7 mmHg. Upon optimization and placing the electrodes with a separation of about 3.6 times the measured abdominal wall thickness, the sensitivity for high IAP drastically increased, allowing continuous non-invasive monitoring of IAP, confirming the optimization method proposed in this work.

Keywords

Intra-abdominal pressure Bioimpedance Non-invasive 

Notes

Acknowledgements

The authors warmly thank David Kushnir, Chief Operation Officer at The Center of Innovative Surgery of Hadassah Medical Center in Jerusalem, Israel.

Funding

Support for this research was granted by the Lev Academic Center: Internal Grant 5777-8.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The experiment and the preparation were done according to the ethical considerations of The Center of Innovative Surgery of Hadassah Medical Center, Jerusalem, Israel, and local regulations (the strictest among them).

References

  1. 1.
    De Waele JJ, De Laet I, Kirkpatrick AW, Hoste E. Intra-abdominal hypertension and abdominal compartment syndrome. Am J Kidney Dis. 2011;57(1):159–69.CrossRefGoogle Scholar
  2. 2.
    Malbrain ML, Cheatham ML, Kirkpatrick A, Sugrue M, Parr M, De Waele J, Balogh Z, Leppäniemi A, Olvera C, Ivatury R, D’Amours S, Wendon J, Hillman K, Johansson K, Kolkman K, Wilmer A. results from the international conference of experts on intra-abdominal hypertension and abdominal compartment syndrome. I. Definitions. Intensive Care Med. 2006;32(11):1722–32.CrossRefGoogle Scholar
  3. 3.
    Sugrue M, Bauman A, Jones F, Bishop G, Flabouris A, Parr M, Stewart A, Hillman K, Deane SA. Clinical examination is an inaccurate predictor of intraabdominal pressure. World J Surg. 2002;26(12):1428–31.CrossRefGoogle Scholar
  4. 4.
    Malbrain ML, Roberts DJ, De Laet I, De Waele JJ, Sugrue M, Schachtrupp A, Duchesne J, Van Ramshorst G, De Keulenaer B, Kirkpatrick AW, Ahmadi-Noorbakhsh S, Mulier J, Ivatury R, Pracca F, Wise R, Pelosi P. The role of abdominal compliance, the neglected parameter in critically ill patients - a consensus review of 16. Part 1: definitions and pathophysiology. Anaesthesiol Intensive Ther. 2014;46(5):392–405.CrossRefGoogle Scholar
  5. 5.
    Malbrain ML, De Laet I, De Waele JJ, Sugrue M, Schachtrupp A, Duchesne J, Van Ramshorst G, De Keulenaer B, Kirkpatrick AW, Ahmadi-Noorbakhsh S, Mulier J, Pelosi P, Ivatury R, Pracca F, David M, Roberts DJ. The role of abdominal compliance, the neglected parameter in critically ill patients - a consensus review of 16. Part 2: measurement techniques and management recommendations. Anaesthesiol Intensive Ther. 2014;46(5):406–32.CrossRefGoogle Scholar
  6. 6.
    David M, Pracca F, Simini F. Non-invasive negative pressure system to treat abdominal hypertension. In: Jobbágy Á (eds.). 5th European IFMBE Conference. 37. Budapest: Springer Science & Business Media 2011. p. 211–214.Google Scholar
  7. 7.
    David M, Geido D, Pracca F, Sánchez G, Simini F. Zoppolo C Negative pressure device for intraabdominal pressure reduction. J Phys. 2007;90 CS:012035.Google Scholar
  8. 8.
    Pracca F, Biestro A, Gorrassi J, David M, Simini F, Cancela M. ABDOPRE: an external device for the reduction of intra-abdominal pressure Preliminary clinical experience. Rev Bras Ter Intensiva. 2011;23:238–41.CrossRefGoogle Scholar
  9. 9.
    Pracca F, Biestro A, Moraes L, Puppo CB, Calvo SM, Gorrasi J, Cancela M. Direct measurement of intra-abdominal pressure with a solid microtranducer. J Clin Monit Comput. 2007;21(3):167–70.CrossRefGoogle Scholar
  10. 10.
    Iberti TJ, Lieber CE, Benjamin E. Determination of Intra-Abdominal Pressure using a transurethral bladder catheter: clinical validation of the technique. Anesthesiology. 1989;70(1):47–50.CrossRefGoogle Scholar
  11. 11.
    Cheatham ML, Safcsak K. Intraabdominal pressure: a revised method for measurement. J Am Coll Surg. 1998;186(5):594–5.CrossRefGoogle Scholar
  12. 12.
    Cheatham ML, Malbrain ML, Kirkpatrick A, Sugrue M, Parr M, Dewaele J, et al. Results from the international conference of experts on intra-abdominal hypertension and abdominal compartment syndrome. II. Recommendations. Intensive Care Med. 2006;33:951–62.CrossRefGoogle Scholar
  13. 13.
    Kirkpatrick AW, Roberts DJ, De Waele J, Jaeschke R, Malbrain ML, De Keulenaer B, et al. Intra-abdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome. Intensive Care Med. 2013;39(7):1190–206.  https://doi.org/10.1007/s00134-013-2906-z.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    David M, Berkovich U, Pracca F. A numerical analysis towards the continuous non-invasive assessment of intra-abdominal pressure in critical patients based on bioimpedance and microwave reflectometry. In: 13th IEEE biomedical circuits and systems conference, 2017, pp. 21–24.  https://doi.org/10.1109/biocas.2017.8325053.
  15. 15.
    David M, Raviv A, Peretz A, Berkovich U, Pracca F. Towards a continuous non-invasive assessment of intra-abdominal pressure based on bioimpedance and microwave reflectometry: a pilot run on a porcine model. Biomed Signal Process Control. 2018;44:96–100.CrossRefGoogle Scholar
  16. 16.
    Grevious MA, Cohen M, Shah SR, Rodriguez P. Structural and functional anatomy of the abdominal wall. Clin Plast Surg. 2006;33(2):169–79.CrossRefGoogle Scholar
  17. 17.
    Caix P. Anatomy of the abdominal wall. [Article in French]. Ann Chir Plast Esthet. 1999;44(4):289–311.PubMedGoogle Scholar
  18. 18.
    Ger R. The clinical anatomy of the anterolateral abdominal wall musculature. Clin Anat. 2009;22(3):392–7.CrossRefGoogle Scholar
  19. 19.
    Quinn TH, Annibali R, Dalley AF II, Fitzgibbons RJ Jr. Dissection of the anterior abdominal wall and the deep inguinal region from a laparoscopic perspective. Clin Anat. 1995;8(4):245–51.CrossRefGoogle Scholar
  20. 20.
    Simini F, Bertemes-Filho P. Bioimpedance in biomedical applications and research. 1st ed. New York: Springer; 2018.CrossRefGoogle Scholar
  21. 21.
    Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol. 1996;41(11):2251–69.CrossRefGoogle Scholar
  22. 22.
    Gabriel C, Gabriel S. Compilation of the dielectric properties of body tissues at rf and microwave frequencies, internet document. 2016. http://www.dtic.mil/dtic/tr/fulltext/u2/a305826.pdf. Authorized mirror at http://niremf.ifac.cnr.it/docs/DIELECTRIC/home.html. Accessed Jan 2016.
  23. 23.
    LH Deng, SH Karagiannoglou, WI Sakkas, JC Barbenel. Effect of geometrical factors of coplanar electrodes on biomedical measurements as exemplified by the electrical impedance measurement of saline and blood. In: Proceeding of the second joint EMBS/BMES conference, 2002, pp. 1667–1668.Google Scholar
  24. 24.
    Clausen CH, Skands GE, Bertelsen CV, Svendsen WE. Coplanar electrode layout optimized for increased sensitivity for electrical impedance spectroscopy. Micromachines. 2015;6(1):110–20.CrossRefGoogle Scholar
  25. 25.
    G Yang, H Long, H Tian, S Luo, H Huang. Bioimpedance measurement: modeling of coplanar electrodes and impedance characterization. In: 2008 2nd International Conference on bioinformatics and biomedical engineering, Shanghai, 2008, pp. 1248–1251.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringJerusalem College of Technology – Lev Academic CenterJerusalemIsrael
  2. 2.Department of Intensive Medicine, Hospital de ClínicasUniversidad de la RepúblicaMontevideoUruguay
  3. 3.Núcleo de Ingeniería BiomédicaUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations