Advertisement

Oesophageal balloon calibration during pressure support ventilation: a proof of concept study

  • Gianmaria CammarotaEmail author
  • Federico Verdina
  • Erminio Santangelo
  • Gianluigi Lauro
  • Ester Boniolo
  • Riccardo Tarquini
  • Elena Spinelli
  • Marta Zanoni
  • Eugenio Garofalo
  • Andrea Bruni
  • Antonio Pesenti
  • Francesco Della Corte
  • Paolo Navalesi
  • Rosanna Vaschetto
  • Tommaso Mauri
Original Research
  • 29 Downloads

Abstract

Oesophageal balloon calibration improves the oesophageal pressure (Pes) assessment during invasive controlled mechanical ventilation. The primary aim of the present investigation was to ascertain the feasibility of oesophageal balloon calibration during pressure support ventilation (PSV). Secondarily, the calibrated Pes (Pescal) was compared to uncalibrated one acquired at 4 ml-filling volume (PesV4), as per manufacturer recommendation. After a naso-gastric tube equipped with oesophageal balloon was correctly positioned in 21 adult patients undergoing invasive volume-controlled ventilation (VCV) for acute hypoxemic respiratory failure, the balloon was progressively inflated, applying a series of end-inspiratory and end-expiratory holds at each filling volume during VCV and PSV. Upon optimal balloon filling volume (Vbest) was identified, Pescal was computed by correcting the Pes measured at Vbest for the oesophageal wall pressure elicited at same filling volume. Finally, end-expiratory and end-inspiratory PesV4 were recorded too. A total of 42 calibrations, 21 per ventilatory mode, were performed. Vbest was 1.9 ± 1.6 ml in VCV and 1.7 ± 1.6 ml in PSV (p = 0.5217). PesV4 was overestimated compared to Pescal at end-expiration and end-inspiration (p <0.0001 for all comparisons) in both VCV (13.4 ± 3.4 cmH2O and 15.4 ± 3 cmH2O vs. 8.5 ± 2.9 cmH2O and 11.4 ± 3 cmH2O) and PSV (14.7 ± 4.2 cmH2O and 17 ± 3.9 cmH2O vs. 8.9 ± 3.4 cmH2O and 12.4 ± 3.9 cmH2O). In PSV, oesophageal balloon calibration is feasible and allows to obtain a reliable Pes assessment compared to uncalibrated approach.

Keywords

Manometry Oesophagus Artefacts Artificial respiration 

Notes

Acknowledgements

The present investigation has been conducted employing institutional funding (Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy) for oesophageal catheters purchasing.

Funding

Prof. Paolo Navalesi reports grants, personal fees and non-financial support from Maquet Critical Care, grants and non-financial support from Draeger, grants and non-financial support from Intersurgical S.p.A, personal fees from Oriopharma, personal fees from Philips, personal fees from Resmed, personal fees from MSD, personal fees from Novartis, outside the submitted work. In addition, Prof. Navalesi has a patent helmet Next with royalties paid to Intersurgical Spa, and a patent EP20170199831 pending. Prof. Pesenti reports personal fees from Maquet, personal fees from Xenios, personal fees from Baxter, personal fees from Boehringer Ingelheim, outside the submitted work. Dr. Mauri reports personal fees from Drager, personal fees from Fisher and Paykel, outside the submitted work.

Compliance with ethical standards

Conflict of interest

No conflict of interest exists for Gianmaria Cammarota, Federico Verdina, Erminio Santangelo, Gianluigi Lauro, Ester Boniolo, Riccardo Tarquini, Elena Spinelli, Eugenio Garofalo, Andrea Bruni, Francesco Della Corte, and Rosanna Vaschetto.

References

  1. 1.
    Brochard L, Martin GS, Blanch L, Pelosi P, Belda FJ, Jubran A, et al. Clinical review: respiratory monitoring in the ICU—a consensus of 16. Crit Care. 2012;16:219.CrossRefGoogle Scholar
  2. 2.
    Loring SH, Topulos GP, Hubmayr RD. Transpulmonary pressure: the importance of precise defi nitions and limiting assumptions. Am J Respir Crit Care Med. 2016;194:1452–7.CrossRefGoogle Scholar
  3. 3.
    Grieco DL, Chen L, Brochard L. Transpulmonary pressure: importance and limits. Ann Transl Med. 2017;5:285.CrossRefGoogle Scholar
  4. 4.
    Mauri T, Yoshida T, Bellani G, Goligher EC, Carteaux G, Rittayamai N, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med. 2016;42:1360–73.CrossRefGoogle Scholar
  5. 5.
    Akoumianaki E, Maggiore SM, Valenza F, Bellani G, Jubran A, Loring SH, et al. The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med. 2014;189:520–31.CrossRefGoogle Scholar
  6. 6.
    Loring SH, O’Donnell CR, Behazin N, Malhotra A, Sarge T, Ritz R, et al. Esophageal pressures in acute lung injury: do they represent artifact or useful information about transpulmonary pressure, chest wall mechanics, and lung stress? J Appl Physiol. 2010;108:515–22.CrossRefGoogle Scholar
  7. 7.
    Hedenstierna G. Esophageal pressure: benefit and limitations. Minerva Anestesiol. 2012;78:959–66.PubMedGoogle Scholar
  8. 8.
    Mojoli F, Chiumello D, Pozzi M, Algieri I, Bianzina S, Luoni S, et al. Esophageal pressure measurements under different conditions of intrathoracic pressure. An in vitro study of second generation balloon catheters. Minerva Anestesiol. 2015;81:855–64.PubMedGoogle Scholar
  9. 9.
    Milic-Emili J, Mead J, Turner JM, Glauser EM. Improved technique for estimating pleural pressure from esophageal balloons. J Appl Physiol. 1964;19:207–11.CrossRefGoogle Scholar
  10. 10.
    Mojoli F, Iotti GA, Torriglia F, Pozzi M, Volta CA, Bianzina S, et al. In vivo calibration of esophageal pressure in the mechanically ventilated patient makes measurements reliable. Crit Care. 2016;20:98.CrossRefGoogle Scholar
  11. 11.
    Umbrello M, Chiumello D. Interpretation of the transpulmonary pressure in the critically ill patient. Ann Transl Med. 2018;6:383.CrossRefGoogle Scholar
  12. 12.
    Talmor D, Sarge T, Malhotra A, O’Donnell CR, Ritz R, Lisbon A, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008;359:2095–104.CrossRefGoogle Scholar
  13. 13.
    Grasso S, Terragni P, Birocco A, Urbino R, Del Sorbo L, Filippini C, et al. ECMO criteria for influenza A (H1N1)-associated ARDS: role of transpulmonary pressure. Intensive Care Med. 2012;38:395–403.CrossRefGoogle Scholar
  14. 14.
    Sun XM, Chen GQ, Huang HW, He X, Yang YL, Shi ZH, et al. Use of esophageal balloon pressure-volume curve analysis to determine esophageal wall elastance and calibrate raw esophageal pressure: a bench experiment and clinical study. BMC Anesthesiol. 2018;18:1–9.CrossRefGoogle Scholar
  15. 15.
    Yang Y-L, He X, Sun X-M, Chen H, Shi Z-H, Xu M, et al. Optimal esophageal balloon volume for accurate estimation of pleural pressure at end-expiration and end-inspiration: an in vitro bench experiment. Intensive Care Med Exp. 2017;5:35.CrossRefGoogle Scholar
  16. 16.
    Hotz JC, Sodetani CT, Van Steenbergen J, Khemani RG, Deakers TW, Newth CJ. Measurements obtained from esophageal balloon catheters are affected by the esophageal balloon filling volume in children with ARDS. Respir Care. 2018;63:177–86.CrossRefGoogle Scholar
  17. 17.
    Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307:2526–33.PubMedGoogle Scholar
  18. 18.
    Lanteri CJ, Kano S, Sly PD. Validation of esophageal pressure occlusion test after paralysis. Pediatr Pulmonol. 1994;17:56–62.CrossRefGoogle Scholar
  19. 19.
    Higgs BD, Behrakis PK, Bevan DR, Milic Emili J. Measurement of pleural pressure with esophageal balloon in anesthetized humans. Anesthesiology. 1983;59:340–3.CrossRefGoogle Scholar
  20. 20.
    D’Angelo E, Robatto FM, Calderini E, Tavola M, Bono D, Torri G, et al. Pulmonary and chest wall mechanics in anesthetized paralyzed humans. J Appl Physiol. 1991;70:2602–10.CrossRefGoogle Scholar
  21. 21.
    Baydur A, Behrakis PK, Zin WA, Jaeger M, Milic-Emili J. A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis. 1982;126:788–91.PubMedGoogle Scholar
  22. 22.
    Bellani G, Grasselli G, Teggia-Droghi M, Mauri T, Coppadoro A, Brochard L, et al. Do spontaneous and mechanical breathing have similar effects on average transpulmonary and alveolar pressure? A clinical crossover study. Crit Care. 2016;20:142.CrossRefGoogle Scholar
  23. 23.
    Younes M, Webster K, Kun J, Roberts D, Masiowski B. A method for measuring passive elastance during proportional assist ventilation. Ajrccm. 2001;164:50–60.Google Scholar
  24. 24.
    MacIntyre NR. Respiratory function during pressure support ventilation. Chest. Am Coll Chest Phys. 1986;89:677–83.Google Scholar
  25. 25.
    Mojoli F, Torriglia F, Orlando A, Bianchi I, Arisi E, Pozzi M. Technical aspects of bedside respiratory monitoring of transpulmonary pressure. Ann Transl Med. 2018;6:377.CrossRefGoogle Scholar
  26. 26.
    Hedenstierna G, Järnberg PO, Torsell L, Gottlieb I. Esophageal elastance in anesthetized humans. J Appl Physiol. 1983;54:1374.CrossRefGoogle Scholar
  27. 27.
    Chiumello D, Consonni D, Coppola S, Froio S, Crimella F, Colombo A. The occlusion tests and end-expiratory esophageal pressure: measurements and comparison in controlled and assisted ventilation. Ann Intensive Care. 2016;6:1–10.CrossRefGoogle Scholar
  28. 28.
    Chiumello D, Gallazzi E, Marino A, Berto V, Mietto C, Cesana B, et al. A validation study of a new nasogastric polyfunctional catheter. Intensive Care Med. 2011;37:791–5.CrossRefGoogle Scholar
  29. 29.
    Yoshida T, Amato MBP, Grieco DL, Chen L, Lima CAS, Roldan R, et al. Esophageal manometry and regional transpulmonary pressure in lung injury. Am J Respir Crit Care Med. 2018;15:1018–26.CrossRefGoogle Scholar
  30. 30.
    Chiumello D, Carlesso E, Cadringher P, Caironi P, Valenza F, Polli F, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178:346–55.CrossRefGoogle Scholar
  31. 31.
    Julious SA. Sample size of 12 per group rule of thumb for a pilot study. Pharm Stat. 2005;4:287–91.CrossRefGoogle Scholar
  32. 32.
    Persson P, Ahlstrand R, Gudmundsson M, De Leon A, Lundin S. Detailed measurements of oesophageal pressure during mechanical ventilation with an advanced high-resolution manometry catheter. Crit Care. 2019;23:1–12.CrossRefGoogle Scholar
  33. 33.
    Costa R, Navalesi P, Cammarota G, Longhini F, Spinazzola G, Cipriani F, et al. Remifentanil effects on respiratory drive and timing during pressure support ventilation and neurally adjusted ventilatory assist. Respir Physiol Neurobiol. 2017;244:10–6.CrossRefGoogle Scholar
  34. 34.
    Vaschetto R, Cammarota G, Colombo D, Longhini F, Grossi F, Giovanniello A, et al. Effects of propofol on patient-ventilator synchrony and interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med. 2014;42:74–82.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Gianmaria Cammarota
    • 1
    Email author
  • Federico Verdina
    • 2
  • Erminio Santangelo
    • 2
  • Gianluigi Lauro
    • 2
  • Ester Boniolo
    • 2
  • Riccardo Tarquini
    • 2
  • Elena Spinelli
    • 3
  • Marta Zanoni
    • 1
  • Eugenio Garofalo
    • 4
  • Andrea Bruni
    • 4
  • Antonio Pesenti
    • 3
  • Francesco Della Corte
    • 2
  • Paolo Navalesi
    • 4
  • Rosanna Vaschetto
    • 2
  • Tommaso Mauri
    • 3
  1. 1.Anaesthesia and General Intensive Care“Maggiore della Carità” University HospitalNovaraItaly
  2. 2.Department of Translational MedicineUniversità del Piemonte OrientaleNovaraItaly
  3. 3.Department of Anaesthesia, Critical Care and EmergencyFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
  4. 4.Department of Medical and Surgical ScienceUniversità Magna GreaciaCatanzaroItaly

Personalised recommendations