The effect of prolonged steep head-down laparoscopy on the optical nerve sheath diameter

  • Riccardo ColomboEmail author
  • Andrea Agarossi
  • Beatrice Borghi
  • Davide Ottolina
  • Paola Bergomi
  • Elisabetta Ballone
  • Caterina Minari
  • Vanessa Della Porta
  • Emanuela Menozzi
  • Stefano Figini
  • Tommaso Fossali
  • Emanuele Catena
Original Research


Both the steep head-down position and pneumoperitoneum increase the intracranial pressure (ICP), and their combination for a prolonged period during laparoscopic radical prostatectomy (LRP) might influence the central nervous system homeostasis. Changes in optic nerve sheath diameter (ONSD) may reflect those in ICP. This study aims to quantify the change in ONSD in response to peritoneal CO2 insufflation and steep Trendelenburg position during LRP. ONSD was measured by ultrasound in 20 patients undergoing LRP and ten awake healthy volunteers. In patients, ONSD was assessed at baseline immediately after induction of general anesthesia in supine position, 10 and 60 min from baseline in a 25° head-down position during pneumoperitoneum, and after deflation of pneumoperitoneum with the patient supine at 0° angle. ONSD in controls was assessed at baseline with the patient lying supine, after 10 and 60 min of 25° head-down position, and 10 min after repositioning at 0° angle. ONSD increased significantly in both patients and controls (p < 0.0001) without between-group differences. The mean increase was 10.3% (95% CI 7.7–12.9%) in patients versus 7.5% (95% CI 2.5–12.6%) in controls (p = 0.28), and didn’t affect the time to recovery from anesthesia. In the studied patients, with a limited increase of end-tidal CO2 and airway pressure, and low volume fluid infusion, the maximal ONSD was always below the cut-off value suspect for increased ICP. ONSD reflects the changes in hydrostatic pressure in response to steep Trendelenburg position, and its increase might be minimized by careful handling of general anesthesia.


Laparoscopy Pneumoperitoneum Intracranial pressure Optic nerve Ultrasound Trendelenburg 



Intramural source only.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Hu JC, Gu X, Lipsitz SR, Barry MJ, D’Amico AV, Weinberg AC, Keating NL. Comparative effectiveness of minimally invasive vs open radical prostatectomy. JAMA. 2009;302(14):1557–64. Scholar
  2. 2.
    Ficarra V, Novara G, Artibani W, Cestari A, Galfano A, Graefen M, Guazzoni G, Guillonneau B, Menon M, Montorsi F, Patel V, Rassweiler J, Van Poppel H. Retropubic, laparoscopic, and robot-assisted radical prostatectomy: a systematic review and cumulative analysis of comparative studies. Eur Urol. 2009;55(5):1037–63. Scholar
  3. 3.
    Hansen HC, Helmke K. Validation of the optic nerve sheath response to changing cerebrospinal fluid pressure: ultrasound findings during intrathecal infusion tests. J Neurosurg. 1997;87(1):34–40. Scholar
  4. 4.
    Newman WD, Hollman AS, Dutton GN, Carachi R. Measurement of optic nerve sheath diameter by ultrasound: a means of detecting acute raised intracranial pressure in hydrocephalus. Br J Ophthalmol. 2002;86(10):1109–13.CrossRefGoogle Scholar
  5. 5.
    Blaivas M, Theodoro D, Sierzenski PR. Elevated intracranial pressure detected by bedside emergency ultrasonography of the optic nerve sheath. Acad Emerg Med. 2003;10(4):376–81.CrossRefGoogle Scholar
  6. 6.
    Jimenez Restrepo JN, Leon OJ, Quevedo Florez LA. Ocular ultrasonography: a useful instrument in patients with trauma brain injury in emergency service. Emerg Med Int. 2019;1:1. Scholar
  7. 7.
    Girisgin AS, Kalkan E, Kocak S, Cander B, Gul M, Semiz M. The role of optic nerve ultrasonography in the diagnosis of elevated intracranial pressure. Emerg Med J. 2007;24(4):251–4. Scholar
  8. 8.
    Liu D, Kahn M. Measurement and relationship of subarachnoid pressure of the optic nerve to intracranial pressures in fresh cadavers. Am J Ophthalmol. 1993;116(5):548–56.CrossRefGoogle Scholar
  9. 9.
    Amini A, Kariman H, Arhami Dolatabadi A, Hatamabadi HR, Derakhshanfar H, Mansouri B, Safari S, Eqtesadi R. Use of the sonographic diameter of optic nerve sheath to estimate intracranial pressure. Am J Emerg Med. 2013;31(1):236–9. Scholar
  10. 10.
    Tayal VS, Neulander M, Norton HJ, Foster T, Saunders T, Blaivas M. Emergency department sonographic measurement of optic nerve sheath diameter to detect findings of increased intracranial pressure in adult head injury patients. Ann Emerg Med. 2007;49(4):508–14. Scholar
  11. 11.
    Halverson A, Buchanan R, Jacobs L, Shayani V, Hunt T, Riedel C, Sackier J. Evaluation of mechanism of increased intracranial pressure with insufflation. Surg Endosc. 1998;12(3):266–9.CrossRefGoogle Scholar
  12. 12.
    Lovell AT, Marshall AC, Elwell CE, Smith M, Goldstone JC. Changes in cerebral blood volume with changes in position in awake and anesthetized subjects. Anesth Analg. 2000;90(2):372–6.PubMedGoogle Scholar
  13. 13.
    Raimondi F, Colombo R, Costantini E, Marchi A, Corona A, Fossali T, Borghi B, Figini S, Guzzetti S, Porta A. Effects of laparoscopic radical prostatectomy on intraoperative autonomic nervous system control of hemodynamics. Minerva Anestesiol. 2017;83(12):1265–73. Scholar
  14. 14.
    Park EY, Koo BN, Min KT, Nam SH. The effect of pneumoperitoneum in the steep Trendelenburg position on cerebral oxygenation. Acta Anaesthesiol Scand. 2009;53(7):895–9. Scholar
  15. 15.
    Chen K, Wang L, Wang Q, Liu X, Lu Y, Li Y, Wong GTC. Effects of pneumoperitoneum and steep Trendelenburg position on cerebral hemodynamics during robotic-assisted laparoscopic radical prostatectomy: a randomized controlled study. Medicine. 2019;98(21):e15794. Scholar
  16. 16.
    Awad H, Santilli S, Ohr M, Roth A, Yan W, Fernandez S, Roth S, Patel V. The effects of steep trendelenburg positioning on intraocular pressure during robotic radical prostatectomy. Anesth Analg. 2009;109(2):473–8. Scholar
  17. 17.
    Roth S, Moss HE. Update on perioperative ischemic optic neuropathy associated with non-ophthalmic surgery. Front Neurol. 2018;9:557. Scholar
  18. 18.
    Weber ED, Colyer MH, Lesser RL, Subramanian PS. Posterior ischemic optic neuropathy after minimally invasive prostatectomy. J Neuro-phthalmol. 2007;27(4):285–7. Scholar
  19. 19.
    Dubourg J, Javouhey E, Geeraerts T, Messerer M, Kassai B. Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: a systematic review and meta-analysis. Intensive Care Med. 2011;37(7):1059–68. Scholar
  20. 20.
    Robba C, Bacigaluppi S, Cardim D, Donnelly J, Sekhon MS, Aries MJ, Mancardi G, Booth A, Bragazzi NL, Czosnyka M, Matta B. Intraoperative non invasive intracranial pressure monitoring during pneumoperitoneum: a case report and a review of the published cases and case report series. J Clin Monit Comput. 2016;30(5):527–38. Scholar
  21. 21.
    Soldatos T, Chatzimichail K, Papathanasiou M, Gouliamos A. Optic nerve sonography: a new window for the non-invasive evaluation of intracranial pressure in brain injury. Emerg Med J. 2009;26(9):630–4. Scholar
  22. 22.
    Romagnuolo L, Tayal V, Tomaszewski C, Saunders T, Norton HJ. Optic nerve sheath diameter does not change with patient position. Am J Emerg Med. 2005;23(5):686–8. Scholar
  23. 23.
    Ballantyne SA, O’Neill G, Hamilton R, Hollman AS. Observer variation in the sonographic measurement of optic nerve sheath diameter in normal adults. Eur J Ultrasound. 2002;15(3):145–9.CrossRefGoogle Scholar
  24. 24.
    Moretti R, Pizzi B. Ultrasonography of the optic nerve in neurocritically ill patients. Acta Anaesthesiol Scand. 2011;55(6):644–52. Scholar
  25. 25.
    Soliman I, Johnson G, Gillman LM, Zeiler FA, Faqihi F, Aletreby WT, Balhamar A, Mahmood NN, Ahmad Mumtaz S, Alharthy A, Lazaridis C, Karakitsos D. New optic nerve sonography quality criteria in the diagnostic evaluation of traumatic brain injury. Crit Care Res Pract. 2018. Scholar
  26. 26.
    Hamilton DR, Sargsyan AE, Melton SL, Garcia KM, Oddo B, Kwon DS, Feiveson AH, Dulchavsky SA. Sonography for determining the optic nerve sheath diameter with increasing intracranial pressure in a porcine model. J Ultrasound Med. 2011;30(5):651–9.CrossRefGoogle Scholar
  27. 27.
    Rosenthal RJ, Friedman RL, Chidambaram A, Khan AM, Martz J, Shi Q, Nussbaum M. Effects of hyperventilation and hypoventilation on PaCO2 and intracranial pressure during acute elevations of intraabdominal pressure with CO2 pneumoperitoneum: large animal observations. J Am Coll Surg. 1998;187(1):32–8. Scholar
  28. 28.
    Feldman Z, Robertson CS, Contant CF, Gopinath SP, Grossman RG. Positive end expiratory pressure reduces intracranial compliance in the rabbit. J Neurosurg Anesthesiol. 1997;9(2):175–9.CrossRefGoogle Scholar
  29. 29.
    Akca O. Optimizing the intraoperative management of carbon dioxide concentration. Curr Opin Anaesthesiol. 2006;19(1):19–25. Scholar
  30. 30.
    You AH, Song Y, Kim DH, Suh J, Baek JW, Han DW. Effects of positive end-expiratory pressure on intraocular pressure and optic nerve sheath diameter in robot-assisted laparoscopic radical prostatectomy: a randomized, clinical trial. Medicine. 2019;98(14):e15051. Scholar
  31. 31.
    Joo J, Koh H, Lee K, Lee J. Effects of systemic administration of dexmedetomidine on intraocular pressure and ocular perfusion pressure during laparoscopic surgery in a steep trendelenburg position: prospective, randomized, double-blinded study. J Korean Med Sci. 2016;31(6):989–96. Scholar
  32. 32.
    Taketani Y, Mayama C, Suzuki N, Wada A, Oka T, Inamochi K, Nomoto Y. Transient but significant visual field defects after robot-assisted laparoscopic radical prostatectomy in deep tRendelenburg position. PLoS ONE. 2015;10(4):e0123361. Scholar
  33. 33.
    Citerio G, Vascotto E, Villa F, Celotti S, Pesenti A. Induced abdominal compartment syndrome increases intracranial pressure in neurotrauma patients: a prospective study. Crit Care Med. 2001;29(7):1466–71. Scholar
  34. 34.
    Chin JH, Kim WJ, Lee J, Han YA, Lim J, Hwang JH, Cho SS, Kim YK. Effect of positive end-expiratory pressure on the sonographic optic nerve sheath diameter as a surrogate for intracranial pressure during robot-assisted laparoscopic prostatectomy: a randomized controlled trial. PLoS ONE. 2017;12(1):e0170369. Scholar
  35. 35.
    Gainsburg DM. Anesthetic concerns for robotic-assisted laparoscopic radical prostatectomy. Minerva Anestesiol. 2012;78(5):596–604.PubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Riccardo Colombo
    • 1
    Email author
  • Andrea Agarossi
    • 1
  • Beatrice Borghi
    • 1
  • Davide Ottolina
    • 1
  • Paola Bergomi
    • 1
  • Elisabetta Ballone
    • 1
  • Caterina Minari
    • 1
  • Vanessa Della Porta
    • 1
  • Emanuela Menozzi
    • 1
  • Stefano Figini
    • 1
  • Tommaso Fossali
    • 1
  • Emanuele Catena
    • 1
  1. 1.Department of Anesthesiology and Intensive Care Unit, ASST Fatebenefratelli Sacco, Luigi Sacco HospitalPolo Universitario – University of MilanMilanItaly

Personalised recommendations