Advertisement

Photoplethysmographic characterization of vascular tone mediated changes in arterial pressure: an observational study

  • Gerardo Tusman
  • Cecilia M. Acosta
  • Sven Pulletz
  • Stephan H. Böhm
  • Adriana Scandurra
  • Jorge Martinez Arca
  • Matías Madorno
  • Fernando Suarez Sipmann
Original Research
  • 40 Downloads

Abstract

To determine whether a classification based on the contour of the photoplethysmography signal (PPGc) can detect changes in systolic arterial blood pressure (SAP) and vascular tone. Episodes of normotension (SAP 90–140 mmHg), hypertension (SAP > 140 mmHg) and hypotension (SAP < 90 mmHg) were analyzed in 15 cardiac surgery patients. SAP and two surrogates of the vascular tone, systemic vascular resistance (SVR) and vascular compliance (Cvasc = stroke volume/pulse pressure) were compared with PPGc. Changes in PPG amplitude (foot-to-peak distance) and dicrotic notch position were used to define 6 classes taking class III as a normal vascular tone with a notch placed between 20 and 50% of the PPG amplitude. Class I-to-II represented vasoconstriction with notch placed > 50% in a small PPG, while class IV-to-VI described vasodilation with a notch placed < 20% in a tall PPG wave. 190 datasets were analyzed including 61 episodes of hypertension [SAP = 159 (151–170) mmHg (median 1st–3rd quartiles)], 84 of normotension, SAP = 124 (113–131) mmHg and 45 of hypotension SAP = 85(80–87) mmHg. SAP were well correlated with SVR (r = 0.78, p < 0.0001) and Cvasc (r = 0.84, p < 0.0001). The PPG-based classification correlated well with SAP (r = − 0.90, p < 0.0001), SVR (r = − 0.72, p < 0.0001) and Cvasc (r = 0.82, p < 0.0001). The PPGc misclassified 7 out of the 190 episodes, presenting good accuracy (98.4% and 97.8%), sensitivity (100% and 94.9%) and specificity (97.9% and 99.2%) for detecting episodes of hypotension and hypertension, respectively. Changes in arterial pressure and vascular tone were closely related to the proposed classification based on PPG waveform.

Clinical Trial Registration NTC02854852.

Keywords

Arterial pressure Photoplethysmography Vasodilation Vasoconstriction Vascular tone 

Notes

Compliance with ethical standards

Conflict of interest

No potential conflicts of interest exist except for Matías Madorno who is partner and manager of MBMed S.A; a company that produce respiratory monitoring equipments.

Informed consent

Informed consent was obtained from all individual participant included in the study.

References

  1. 1.
    Walsh M, Devereaux PJ, Garg AX, Kurz A, Turan A, Rodseth RN, Cvwinski J, Thabane L, Sessler DI. Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery. Toward an empirical definition of hypotension. Anesthesiology. 2013;119:507–15.CrossRefGoogle Scholar
  2. 2.
    Basali A, Masch EJ, Kalfas I, Schubert A. Relation between perioperative hypertension and intracranial hemorrhage after craniotomy. Anesthesiology. 2000;93:48–53.CrossRefGoogle Scholar
  3. 3.
    Reich DL, Bennet-Guerrero E, Bodin C, Hossain S, Winfree W, Krol M. Intraoperative tachycardia and hypertension are independently associated wih adverse outcome in noncardiac surgery of long duration. Anesth Analg. 2002;95:273–7.PubMedGoogle Scholar
  4. 4.
    Bijker JB, van Klei WA, Kappen TH, van Wolfswinkel L, Moons KGM, Kalkman CJ. Incidence of intraoperative hypotension as a function of the chosen definition. Anesthesiology. 2007;107:213–20.CrossRefGoogle Scholar
  5. 5.
    van Waes JAR, van Klei WA, Wijeysundera DN, van Wolfswinkel L, Lindsay TF, Beattie WS. Association between intraoperative hypotension and myocardial injury after vascular surgery. Anesthesiology. 2016;124:35–44.CrossRefGoogle Scholar
  6. 6.
    Bartels K, Esper SA, Thiele RH. Blood pressure monitoring for the anesthesiologist: a practical review. Anesth Analg. 2016;122:1866–79.CrossRefGoogle Scholar
  7. 7.
    Akata T. General anesthetics and vascular smooth muscle. Direct actions of general anesthetics on cellular mechanisms regulating vascular tone. Anesthesiology. 2007;106:365–91.CrossRefGoogle Scholar
  8. 8.
    Lindorf HH. Investigation of the vascular effect of newer local anesthetics and vasoconstrictors. Oral Surg Oral Med. 1979;46:292–7.CrossRefGoogle Scholar
  9. 9.
    Holte K, Foss NB, Svensen C, Lund C, Madsen JL. Epidural anesthesia, hypotension, and changes in intravascular volume. Anesthesiology. 2004;100:281–6.CrossRefGoogle Scholar
  10. 10.
    Allen J. Photopletysmography and its application in clinical physiological measurement. Physiol Meas. 2007;28:R1–39.CrossRefGoogle Scholar
  11. 11.
    Awad AA, Haddadin AS, Tantawy H, Badr TM, Stout RG, Silverman DG, Shelley KH. The relationship between the photoplethysmographic waveform and systemic vascular resistance. J Clin Monit Comput. 2007;21:365–72.CrossRefGoogle Scholar
  12. 12.
    Lee QY, Chan GSH, Redmond SJ, Middleton PM, Steel E, Malouf P, Critoph C, Flynn G, O’Lone E, Lovell NH. Multivariate classification of systemic vascular resistance using photoplethysmography. Physiol Meas. 2011;32:1117–32.CrossRefGoogle Scholar
  13. 13.
    Middleton PM, Chan GSH, Steel E, Malouf P, Critoph C, Flynn G, O’Lone E, Celler BC, Lovell NH. Fingertip photoplethysmographic waveform variability and systemic vascular resistance in intensive care unit patients. Med Biol Eng Comput. 2011;49:859–66.CrossRefGoogle Scholar
  14. 14.
    De Trafford J, Lafferty K. What does photoplethysmography measure? Med Biol Eng Comput. 1984;22:479–80.CrossRefGoogle Scholar
  15. 15.
    Wisely NA, Cook LB. Arterial flow waveforms from pulse oximetry compared with measured Doppler flow waveforms. Anaesthesia. 2001;56:556–61.CrossRefGoogle Scholar
  16. 16.
    O’Rourke MF, Yaginuma T, Avolio AP. Physiological and pathophysiological implications of ventricular/vascular coupling. Ann Biomed Eng. 1984;12:119–34.CrossRefGoogle Scholar
  17. 17.
    Korpas D, Hâlek J, Dolezal L. Parameters describing the pulse wave. Physiol Res. 2009;58:473–9.PubMedGoogle Scholar
  18. 18.
    Van den Bos GC, Westerhof N, Randall OS. Pulse-wave reflection: can it explain the differences between systemic and pulmonary pressure and flow waves? Circ Res. 1982;51:479–85.CrossRefGoogle Scholar
  19. 19.
    Tusman G, Bohm SH, Suarez Sipmann F. Advanced uses of pulse oximetry for monitoring mechanically ventilated patients. Anesth Analg. 2017;201:62–71.CrossRefGoogle Scholar
  20. 20.
    Dawber TR, Thomas HE Jr, McNamara PM. Characteristics of the dicrotic notch of the arterial pulse wave in coronary heart disease. Angiology. 1973;24:244–55.CrossRefGoogle Scholar
  21. 21.
    Morikawa Y. Characteristic pulse wave caused by organic nitrates. Nature. 1967;213:841–2.CrossRefGoogle Scholar
  22. 22.
    Morikawa Y, Matsuzaka J, Kuratsune M, Tsukamoto S, Makisumi S. Plethysmographic study of effects of alcohol. Nature. 1968;220:186–7.CrossRefGoogle Scholar
  23. 23.
    Dillon JB, Hertzman AB. The form of the volume pulse in the finger pad in health, arteriosclerosis, and hypertension. Am Heart J. 1941;21:172–90.CrossRefGoogle Scholar
  24. 24.
    Mancia G, Fagard R, Narkiewicz K. ESH/ESC guidelines for the management of arterial hypertension. Eur Heart J. 2013;34:2159–219.CrossRefGoogle Scholar
  25. 25.
    Milnor WR. Arterial impedance as ventricular afterload. Circ Res. 1975;36:565–70.CrossRefGoogle Scholar
  26. 26.
    Randall OS, Westerhof N, van den Bos GC, Alexander B. Reliability of stroke volume to pulse pressure ratio for estimating and detecting changes in arterial compliance. J Hypertens. 1986;4:293–6.Google Scholar
  27. 27.
    Marik PE, Monnet X, Teboul JL. Hemodynamic parameters to guide fluid theraphy. Ann Intensive Care. 2011;1:1.CrossRefGoogle Scholar
  28. 28.
    Broch O, Renner J, Gruenewald M, Meybohm P, Höcker J, Schöttler J, Steinfath M, Bein B. Variation of left ventricular outflow tract velocity and global end-diatolic volume index reliability predict fluid responsiveness in cardiac surgery patients. J Crit Care. 2012;27:325e7–14.CrossRefGoogle Scholar
  29. 29.
    Sakka SG, Rühl CC, Pfeiffer UJ, Beale R, McLuckie A, Reinhart K, Meier-Hellmann A. Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med. 2000;26:180–7.CrossRefGoogle Scholar
  30. 30.
    Bur A, Herkner H, Vlcek M, Woisetschläger C, Derhasching U, Delle KG, Lagger A, Hirschi MM. Factors influencing the accuracy of oscillometric blood pressure measurement in critically ill patients. Crit Care Med. 2003;31:793–9.CrossRefGoogle Scholar
  31. 31.
    Liu J, Hahn JO, Mukkamala R. Error mechanism of the oscillometric fixed-ratio blood pressre measurement method. Ann Biomed Eng. 2013;41:587–97.CrossRefGoogle Scholar
  32. 32.
    Pytte M, Dybwik K, Sexton J, Straume B, Nielsen W. Oscillometric brachial mean artery pressures are higher than intra-radial mean artery pressures in intensive care unit patients receiving norepinephrine. Acta Anaesthesiol Scand. 2006;50:718–21.CrossRefGoogle Scholar
  33. 33.
    Araghi A, Bander JJ, Guzman JA. Arterial blood pressure monitoring in overweight critically ill patients: invasive or noninvasive. Crit Care. 2006;10:R64.CrossRefGoogle Scholar
  34. 34.
    Natalini G, Rosano A, Taranto M, Faggian B, Vittorelli E, Bernardini A. Arterial versus plethysmographic dynamic indices to test responsiveness for testing fluid administration in hypotensive patients: a clinical trial. Anesth Analg. 2006;103:1478–84.CrossRefGoogle Scholar
  35. 35.
    Cannesson M, Besnard C, Durand PG, Bohé J, Jacques D. Relation between respiratory variations in pulse oximetry plethysmographic waveform amplitude and arterial pulse pressure in ventilated patients. Crit Care. 2005;9:R562–8.CrossRefGoogle Scholar
  36. 36.
    Millasseau SC, Kelly RP, Ritter JM, Chowienczyk PJ. Determination of age-related increases in large artery stiffness by digital pulse contour analysis. Clin Sci (Lond). 2002;103:371–7.CrossRefGoogle Scholar
  37. 37.
    Allen J, Murray A. Age-related changes in peripheral pulse shape characteristics at various body sites. Physiol Meas. 2003;24:297–307.CrossRefGoogle Scholar
  38. 38.
    Hashimoto J, Chonan K, Aoki Y, Nishimura T, Ohkubo T, Hozawa A, Suzuki M, Matsubara M, Michimata M, Araki T, Imai Y. Pulse wave velocity and the second derivative of the finger photoplethysmogram in treated hypertensive patients: their relationship and associating factors. J Hypertens. 2002;20:2415–22.CrossRefGoogle Scholar
  39. 39.
    Peñaz J. Criteria for set point estimation in the volume clamp method of blood pressure measurement. Physiol Meas. 1992;41:5–10.Google Scholar
  40. 40.
    Pinna GD, Maestri R, Mortara A. Estimation of arterial blood pressure variability by spectral analysis: comparison between Finapres and invasive measurements. Physiol Meas. 1996;17:147–9.CrossRefGoogle Scholar
  41. 41.
    Wallace C, Barker D, Apert C, Tankersley SJ, Conroy JM, Kerns RE. Comparison of blood pressure measurement by Doppler and by pulse oximetery techniques. Anesth Analg. 1987;66:1018–9.CrossRefGoogle Scholar
  42. 42.
    Talke P, Nichols RJ, Traber DL. Does measurement of systolic blood pressure with a pulse oximeter correlate with conventional methods? J Clin Monit. 1990;6:5–9.CrossRefGoogle Scholar
  43. 43.
    Bortolotto LA, Blacher J, Kondo T, Takazawa K, Safar ME. Assessment of vascular aging and atherosclerosis in hypertensive subjects: second derivative of photoplethysmogram versus pulse wave velocity. Am J Hypertens. 2000;13:165–71.CrossRefGoogle Scholar
  44. 44.
    Awad AA, Ghobashy AM, Stout RG, Silverman DG, Shelley KH. How does plethysmogram derived from the pulse oximeter relate to arterial blood pressure in coronary artery bypass graft patients? Anesth Analg. 2001;93:1466–71.CrossRefGoogle Scholar
  45. 45.
    Lopez-Beltrán EA, Blackshear PL, Finkelstein SM, Cohn JN. Non-invasive studies of peripheral vascular compliance using a non-occluding photoplethysmographic method. Med Biol Eng Comput. 1998;36:748–53.CrossRefGoogle Scholar
  46. 46.
    Jagomägi K, Raamat R, Talts J, Ragun U, Länsimies E, Jurvelin J. Recording of dynamic arterial compliance changes during hand elevation. Clin Physiol Funct Imaging. 2005;25:350–6.CrossRefGoogle Scholar
  47. 47.
    Bendjelid K. The pulse oximetry plethysmographic curve revisited. Curr Opin Crit Care. 2008;14:348–53.CrossRefGoogle Scholar
  48. 48.
    Fischer GW, Levin MA. Vasoplegia during cardiac surgery: current concepts and management. Semin Thorac Surg. 2010;22:140–4.Google Scholar
  49. 49.
    Overgaard CB, Dzavík V. Inotropes and vasopressors. Review of physiology and clinical use in cardiovascular disease. Circulation. 2008;118:1047–56.CrossRefGoogle Scholar
  50. 50.
    Morimatsu H, Uchino S, Chung J, Bellomo R, Raman J, Buxton B. Norephinephrine for hypotensive vasodilation after cardiac surgery: impact on renal function. Intensive Care Med. 2003;29:1106–12.CrossRefGoogle Scholar
  51. 51.
    Wajima Z, Shiga T, Imanaga K, Inoue T. Do induce hypertension and hypotension affect stroke volume variation in man? J Clin Anaesth. 2012;24:207–11.CrossRefGoogle Scholar
  52. 52.
    Bouchcourt JP, Riva JA, Grignola JC. The increase of vasomotor tone avoids the ability of the dynamic preload indicators to estimate fluid responsiveness. BMC Anesthesiol. 2013;13:41.CrossRefGoogle Scholar
  53. 53.
    Bagshaw SM, Brophy PD, Ronco CD. Fluid balance as a biomarker: impact of fluid overload on outcome in critically ill patients with acute kidney injury. Crit Care. 2008;12:169.CrossRefGoogle Scholar
  54. 54.
    Morin JF, Mistry B, Langllois Y, Ma F, Chaumoun P, Holcroft C. Fluid overload after coronary artery bypass grafting surgery increases the incidence of postoperative complications. World J Cardiovasc Surg. 2011;1:18–23.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of AnesthesiologyHospital Privado de ComunidadMar del PlataArgentina
  2. 2.Department of Anesthesiology and Intensive Care MedicineKlinikum OsnabrueckOsnabrueckGermany
  3. 3.Department of Anesthesiology and Intensive Care MedicineRostock University Medical CenterRostockGermany
  4. 4.Bioengineering Laboratory, Electronic Department, School of EngineeringMar del Plata UniversityMar del PlataArgentina
  5. 5.Instituto Tecnológico Buenos Aires (ITBA)Buenos AiresArgentina
  6. 6.Hedenstierna Laboratory, Department of Surgical SciencesUppsala UniversityUppsalaSweden
  7. 7.CIBERESMadridSpain
  8. 8.Department of Critical CareHospital Universitario de La PrincesaMadridSpain

Personalised recommendations