Advertisement

Cerebral arterial time constant calculated from the middle and posterior cerebral arteries in healthy subjects

  • Agnieszka Uryga
  • Magdalena Kasprowicz
  • Małgorzata Burzyńska
  • Leanne Calviello
  • Katarzyna Kaczmarska
  • Marek Czosnyka
Original Research

Abstract

The cerebral arterial blood volume changes (∆CaBV) during a single cardiac cycle can be estimated using transcranial Doppler ultrasonography (TCD) by assuming pulsatile blood inflow, constant, and pulsatile flow forward from large cerebral arteries to resistive arterioles [continuous flow forward (CFF) and pulsatile flow forward (PFF)]. In this way, two alternative methods of cerebral arterial compliance (Ca) estimation are possible. Recently, we proposed a TCD-derived index, named the time constant of the cerebral arterial bed (τ), which is a product of Ca and cerebrovascular resistance and is independent of the diameter of the insonated vessel. In this study, we aim to examine whether the τ estimated by either the CFF or the PFF model differs when calculated from the middle cerebral artery (MCA) and the posterior cerebral artery (PCA). The arterial blood pressure and TCD cerebral blood flow velocity (CBFVa) in the MCA and in the PCA were non-invasively measured in 32 young, healthy volunteers (median age: 24, minimum age: 18, maximum age: 31). The τ was calculated using both the PFF and CFF models from the MCA and the PCA and compared using a non-parametric Wilcoxon signed-rank test. Results are presented as medians (25th–75th percentiles). The cerebrovascular time constant estimated in both arteries using the PFF model was shorter than when using the CFF model (ms): [64.83 (41.22–104.93) vs. 178.60 (160.40–216.70), p < 0.001 in the MCA, and 44.04 (17.15–81.17) vs. 183.50 (153.65–204.10), p < 0.001 in the PCA, respectively]. The τ obtained using the PFF model was significantly longer from the MCA than from the PCA, p = 0.004. No difference was found in the τ when calculated using the CFF model. Longer τ from the MCA might be related to the higher Ca of the MCA than that of the PCA. Our results demonstrate MCA-PCA differences in the τ, but only when the PFF model was applied.

Keywords

Cerebral arterial blood volume changes Cerebral arterial time constant Cerebral arterial compliance Transcranial Doppler ultrasonography 

Notes

Funding

This research was supported by the National Science Centre (Poland) under Grant No. UMO-2013/10/E/ST7/00117.

Compliance with ethical standards

Conflict of interest

ICM+ Software is licensed by Cambridge Enterprise, Cambridge, UK, http://www.neurosurg.cam.ac.uk/icmplus/. Prof. Czosnyka has a financial interest in a fraction of the licensing fee for ICM+ software. The other authors declare that they have no conflict of interest.

Informed consent

The protocol complied with the Declaration of Helsinki of the World Medical Association, and all participants gave written informed consent before participating in the study. All patients had a study identification number and the data was anonymized before analysis.

Research involving human and animal rights

This study was approved by the bioethical committee of the Wroclaw Medical University (permission no. KB—170/2014).

References

  1. 1.
    Ito H, Kanno I, Fukuda H. Human cerebral circulation: positron emission tomography studies. Ann Nucl Med. 2005;19:65–74.  https://doi.org/10.1007/BF03027383.CrossRefPubMedGoogle Scholar
  2. 2.
    Bhogal AA, Philippens MEP, Siero JCW, et al. Examining the regional and cerebral depth-dependent BOLD cerebrovascular reactivity response at 7T. Neuroimage 2015;114:239–48.  https://doi.org/10.1016/j.neuroimage.2015.04.014.CrossRefPubMedGoogle Scholar
  3. 3.
    Ito H, Kanno I, Takahashi K, et al. Regional distribution of human cerebral vascular mean transit time measured by positron emission tomography. Neuroimage 2003;19:1163–9.  https://doi.org/10.1016/S1053-8119(03)00156-3.CrossRefPubMedGoogle Scholar
  4. 4.
    Chen Y, Wang DJJ, Detre JA. Comparison of arterial transit times estimated using arterial spin labeling. MAGMA 2012;25:135–44.  https://doi.org/10.1007/s10334-011-0276-5.CrossRefPubMedGoogle Scholar
  5. 5.
    Haller S, Zaharchuk G, Thomas DL, et al. Arterial spin labeling perfusion of the brain: emerging clinical applications. Radiology 2016;281:337–56.  https://doi.org/10.1148/radiol.2016150789.CrossRefPubMedGoogle Scholar
  6. 6.
    Cardim D, Robba C, Bohdanowicz M, et al. Non-invasive monitoring of intracranial pressure using transcranial Doppler ultrasonography: is it possible? Neurocrit Care. 2016;25:473–91.  https://doi.org/10.1007/s12028-016-0258-6.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Mascia L, Fedorko L, TerBrugge K, et al. The accuracy of transcranial Doppler to detect vasospasm in patients with aneurysmal subarachnoid hemorrhage. Intensive Care Med. 2003;29:1088–94.  https://doi.org/10.1007/s00134-003-1780-5.CrossRefPubMedGoogle Scholar
  8. 8.
    Kim D-J, Kasprowicz M, Carrera E, et al. The monitoring of relative changes in compartmental compliances of brain. Physiol Meas. 2009;30:647–59.  https://doi.org/10.1088/0967-3334/30/7/009.CrossRefPubMedGoogle Scholar
  9. 9.
    Uryga A, Kasprowicz M, Calviello L, et al. Assessment of cerebral hemodynamic parameters using pulsatile versus non-pulsatile cerebral blood outflow models. J Clin Monit Comput doi. 2018.  https://doi.org/10.1007/s10877-018-0136-1.CrossRefGoogle Scholar
  10. 10.
    Avezaat CJJ, van Eijndhoven JHM. The role of the pulsatile pressure variations in intracranial pressure monitoring. Neurosurg Rev. 1986;9:113–20.  https://doi.org/10.1007/BF01743061.CrossRefPubMedGoogle Scholar
  11. 11.
    Kasprowicz M, Diedler J, Reinhard M, et al. Time constant of the cerebral arterial bed in normal subjects. Ultrasound Med Biol. 2012;38:1129–37.  https://doi.org/10.1016/j.ultrasmedbio.2012.02.014.CrossRefPubMedGoogle Scholar
  12. 12.
    Kasprowicz M, Czosnyka M, Soehle M, et al. Vasospasm shortens cerebral arterial time constant. Neurocrit Care. 2012;16:213–8.  https://doi.org/10.1007/s12028-011-9653-1.CrossRefPubMedGoogle Scholar
  13. 13.
    Kasprowicz M, Diedler J, Reinhard M, et al. Time constant of the cerebral arterial bed. Acta Neurochir Suppl. 2012;114:17–21.  https://doi.org/10.1007/978-3-7091-0956-4-4.CrossRefPubMedGoogle Scholar
  14. 14.
    Czosnyka M, Richards HK, Reinhard M, et al. Cerebrovascular time constant: dependence on cerebral perfusion pressure and end-tidal carbon dioxide concentration. Neurol Res. 2012;34:17–24.  https://doi.org/10.1179/1743132811Y.0000000040.CrossRefPubMedGoogle Scholar
  15. 15.
    van Eijndhoven JH, Avezaat CJ. Cerebrospinal fluid pulse pressure and the pulsatile variation in cerebral blood volume: an experimental study in dogs. Neurosurgery 1986;19:507–22.CrossRefGoogle Scholar
  16. 16.
    Carrera E, Kim DJ, Castellani G, et al. Effect of hyper- and hypocapnia on cerebral arterial compliance in normal subjects. J Neuroimaging. 2011;21:121–5.  https://doi.org/10.1111/j.1552-6569.2009.00439.x.CrossRefPubMedGoogle Scholar
  17. 17.
    Uryga A, Placek MM, Wachel P, et al. Phase shift between respiratory oscillations in cerebral blood flow velocity and arterial blood pressure. Physiol Meas. 2017;38:310–24.  https://doi.org/10.1088/1361-6579/38/2/310.CrossRefPubMedGoogle Scholar
  18. 18.
    Aydin IH, Takçi E, Kadioǧlu HH, et al. The variations of lenticulostriate arteries in the middle cerebral artery aneurysms. Acta Neurochir (Wien). 1996;138:555–9.  https://doi.org/10.1007/BF01411176.CrossRefGoogle Scholar
  19. 19.
    Kang CK, Park CA, Lee H, et al. Hypertension correlates with lenticulostriate arteries visualized by 7T magnetic resonance angiography. Hypertension 2009;54:1050–6.  https://doi.org/10.1161/HYPERTENSIONAHA.109.140350.CrossRefPubMedGoogle Scholar
  20. 20.
    Schmahmann JD. Vascular syndromes of the thalamus. Stroke 2003;34:2264–78.  https://doi.org/10.1161/01.STR.0000087786.38997.9E.CrossRefPubMedGoogle Scholar
  21. 21.
    Lazorthes G, Salamon G, Gouaze AZJ. The central arteries of the brain. Classification and territories of vascular supply. In: Salamon G, editor. Advances in cerebral angiography. Berlin: Springer; 1975. pp. 37–41.CrossRefGoogle Scholar
  22. 22.
    Lin C-M, Tseng Y-C, Hsu H-L, et al. Arterial spin labeling perfusion study in the patients with subacute mild traumatic brain injury. PLoS ONE. 2016;11:e0149109.  https://doi.org/10.1371/journal.pone.0149109.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Eames PJ, Potter JF, Panerai RB. Influence of controlled breathing patterns on cerebrovascular autoregulation and cardiac baroreceptor sensitivity. Clin Sci (Lond). 2004;106:155–62.  https://doi.org/10.1042/CS20030194.CrossRefGoogle Scholar
  24. 24.
    Sperna Weiland NH, Hermanides J, Hollmann MW, et al. Novel method for intraoperative assessment of cerebral autoregulation by paced breathing. Br J Anaesth. 2017;119:1141–49.  https://doi.org/10.1093/bja/aex333.CrossRefPubMedGoogle Scholar
  25. 25.
    Poyhonen M, Syvaoja S, Hartikainen J, et al. The effect of carbon dioxide, respiratory rate and tidal volume on human heart rate variability. Acta Anaesthesiol Scand. 2004;48:93–101.  https://doi.org/10.1080/13548500903322791.CrossRefPubMedGoogle Scholar
  26. 26.
    Battisti-Charbonney A, Fisher J, Duffin J. The cerebrovascular response to carbon dioxide in humans. J Physiol. 2011;589:3039–48.  https://doi.org/10.1113/jphysiol.2011.206052.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zamir M, Moir ME, Klassen SA, et al. Cerebrovascular compliance within the rigid confines of the skull. Front Physiol. 2018;9:940.  https://doi.org/10.3389/fphys.2018.00940.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Donnelly J, Budohoski KP, Smielewski P, Czosnyka M. Regulation of the cerebral circulation: bedside assessment and clinical implications. Crit Care. 2016;20:129.  https://doi.org/10.1186/s13054-016-1293-6.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kim D-J, Czosnyka Z, Kasprowicz M, et al. Continuous monitoring of the Monro-Kellie doctrine: is it possible? J Neurotrauma. 2012;29:1354–63.  https://doi.org/10.1089/neu.2011.2018.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zamir M. The physics of coronary blood flow. 1st ed. Boston: Springer; 2005.Google Scholar
  31. 31.
    Kasprowicz M, Czosnyka M, Poplawska K, Reinhard M. Cerebral arterial time constant recorded from the MCA and PICA in normal subjects. Acta Neurochir Suppl. 2016;122:211–4.  https://doi.org/10.1007/978-3-319-22533-3_42.CrossRefPubMedGoogle Scholar
  32. 32.
    Tayebi Meybodi A, Lawton MT, Feng X, Benet A. Posterior inferior cerebellar artery reimplantation: buffer lengths, perforator anatomy, and technical limitations. J Neurosurg. 2016;125:909–14.  https://doi.org/10.3171/2015.8.JNS151411.CrossRefPubMedGoogle Scholar
  33. 33.
    Párraga RG, Ribas GC, Andrade SEGL, De Oliveira E. Microsurgical anatomy of the posterior cerebral artery in three-dimensional images. World Neurosurg. 2011;75:233–57.  https://doi.org/10.1016/j.wneu.2010.10.053.CrossRefPubMedGoogle Scholar
  34. 34.
    MacIntosh BJ, Filippini N, Chappell MA, et al. Assessment of arterial arrival times derived from multiple inversion time pulsed arterial spin labeling MRI. Magn Reson Med. 2010;63:641–7.  https://doi.org/10.1002/mrm.22256.CrossRefPubMedGoogle Scholar
  35. 35.
    Skow RJ, MacKay CM, Tymko MM, et al. Differential cerebrovascular CO2 reactivity in anterior and posterior cerebral circulations. Respir Physiol Neurobiol. 2013;189:76–86.  https://doi.org/10.1016/j.resp.2013.05.036.CrossRefPubMedGoogle Scholar
  36. 36.
    Willie CK, Macleod DB, Shaw AD, et al. Regional brain blood flow in man during acute changes in arterial blood gases. J Physiol. 2012;590:3261–75.  https://doi.org/10.1113/jphysiol.2012.228551.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sato K, Sadamoto T, Hirasawa A, et al. Differential blood flow responses to CO2 in human internal and external carotid and vertebral arteries. J Physiol. 2012;590:3277–90.  https://doi.org/10.1113/jphysiol.2012.230425.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hida W, Kikuchi Y, Okabe S, et al. CO2 response for the brain stem artery blood flow velocity in man. Respir Physiol. 1996;104:71–5.  https://doi.org/10.1016/0034-5687(96)00011-4.CrossRefPubMedGoogle Scholar
  39. 39.
    Yang D, Cabral D, Gaspard EN, et al. Cerebral hemodynamics in the elderly: a transcranial doppler study in the Einstein aging study cohort. J Ultrasound Med. 2016;35:1907–14.  https://doi.org/10.7863/ultra.15.10040.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Robertson AD, Tessmer CF, Hughson RL. Association between arterial stiffness and cerebrovascular resistance in the elderly. J Hum Hypertens. 2010;24:190–6.  https://doi.org/10.1038/jhh.2009.56.CrossRefPubMedGoogle Scholar
  41. 41.
    Liu J, Wang Y, Akamatsu Y, et al. Vascular remodeling after ischemic stroke: mechanisms and therapeutic potentials. Prog Neurobiol. 2014;115:138–56.  https://doi.org/10.1016/j.pneurobio.2013.11.004.CrossRefPubMedGoogle Scholar
  42. 42.
    Osmond JM, Mintz JD, Dalton B, Stepp DW. Obesity increases blood pressure, cerebral vascular remodeling, and severity of stroke in the Zucker rat. Hypertension 2009;53:381–6.  https://doi.org/10.1161/HYPERTENSIONAHA.108.124149.CrossRefPubMedGoogle Scholar
  43. 43.
    Trofimov A, Kalentiev G, Gribkov A, et al. Cerebrovascular time constant in patients with head injury. Acta Neurochir Suppl. 2016;121:295–7.  https://doi.org/10.1007/978-3-319-18497-5_51.CrossRefPubMedGoogle Scholar
  44. 44.
    Capel C, Kasprowicz M, Czosnyka M, et al. Cerebrovascular time constant in patients suffering from hydrocephalus. Neurol Res. 2014;36:255–61.  https://doi.org/10.1179/1743132813Y.0000000282.CrossRefPubMedGoogle Scholar
  45. 45.
    Panerai RB, Sammons EL, Smith SM, et al. Transient drifts between Finapres and continuous intra-aortic measurements of blood pressure. Blood Press Monit. 2007;12:369–76.  https://doi.org/10.1097/MBP.0b013e3282c9ad2f.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Biomedical Engineering, Faculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWrocławPoland
  2. 2.Department of Anesthesiology and Intensive CareWroclaw Medical UniversityWrocławPoland
  3. 3.Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
  4. 4.Department of NeurosurgeryMossakowski Medical Research Centre Polish Academy of SciencesWarsawPoland
  5. 5.Institute of Electronic Systems, Faculty of Electronics and Information TechnologyWarsaw University of TechnologyWarsawPoland

Personalised recommendations