Skip to main content
Log in

Outcome impact of hemodynamic and depth of anesthesia monitoring during major cancer surgery: a before–after study

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Hemodynamic and depth of anesthesia (DOA) monitoring are used in many high-risk surgical patients without well-defined indications and objectives. We implemented monitoring guidelines to rationalize hemodynamic and anesthesia management during major cancer surgery. In early 2014, we developed guidelines with specific targets (Mean arterial pressure > 65 mmHg, stroke volume variation < 12%, cardiac index > 2.5 l min−1 m−2, central venous oxygen saturation > 70%, 40 < bispectral index < 60) for open abdominal cancer surgeries > 2 h. Pre-, intra-, and post-operative data were collected from our electronic medical record database and compared before (March–August 2013) and after (March–August 2014) guideline implementation. A total of 596 patients were studied, 313 before (Before group) and 283 after (After group) guideline implementation. The two groups were comparable for age, ASA score, physiological P-POSSUM score, and surgery duration, but the operative P-POSSUM score was higher in the after group (20 vs. 18, p = 0.009). The use of cardiac output, central venous oxygen saturation and DOA monitoring increased from 40 to 61%, 20 to 29%, and 60 to 88%, respectively (all p-values < 0.05). Intraoperative fluid volumes decreased (16.0 vs. 14.5 ml kg−1 h−1, p = 0.002), whereas the use of inotropes increased (6 vs. 11%, p = 0.022). Postoperative delirium (16 vs. 8%, p = 0.005), urinary tract infections (6 vs. 2%, p = 0.012) and median hospital length of stay (9.6 vs. 8.8 days, p = 0.032) decreased. In patients undergoing major open abdominal surgery for cancer, despite an increase in surgical risk, the implementation of guidelines with predefined targets for hemodynamic and DOA monitoring was associated with a significant improvement in postoperative outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Surgical Outcomes Study. Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries. Br J Anaesth. 2016;117(5):601–9. https://doi.org/10.1093/bja/aew316.

    Article  Google Scholar 

  2. Moonesinghe SR, Harris S, Mythen MG, Rowan KM, Haddad FS, Emberton M, Grocott MP. Survival after postoperative morbidity: a longitudinal observational cohort study. Br J Anaesth. 2014;113(6):977–84. https://doi.org/10.1093/bja/aeu224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eappen S, Lane BH, Rosenberg B, Lipsitz SA, Sadoff D, Matheson D, Berry WR, Lester M, Gawande AA. Relationship between occurrence of surgical complications and hospital finances. JAMA. 2013;309(15):1599–606. https://doi.org/10.1001/jama.2013.2773.

    Article  CAS  PubMed  Google Scholar 

  4. Chong MA, Wang Y, Berbenetz NM, McConachie I. Does goal-directed haemodynamic and fluid therapy improve peri-operative outcomes?: a systematic review and meta-analysis. Eur J Anaesthesiol. 2018;35(7):469–83. https://doi.org/10.1097/EJA.0000000000000778.

    Article  PubMed  Google Scholar 

  5. Saugel B, Michard F, Scheeren TWL. Goal-directed therapy: hit early and personalize! J Clin Monit Comput. 2018;32(3):375–7. https://doi.org/10.1007/s10877-017-0043-x.

    Article  PubMed  Google Scholar 

  6. Scheeren TW, Wiesenack C, Gerlach H, Marx G. Goal-directed intraoperative fluid therapy guided by stroke volume and its variation in high-risk surgical patients: a prospective randomized multicentre study. J Clin Monit Comput. 2013;27(3):225–33. https://doi.org/10.1007/s10877-013-9461-6.

    Article  PubMed  Google Scholar 

  7. Pestana D, Espinosa E, Eden A, Najera D, Collar L, Aldecoa C, Higuera E, Escribano S, Bystritski D, Pascual J, Fernandez-Garijo P, de Prada B, Muriel A, Pizov R. Perioperative goal-directed hemodynamic optimization using noninvasive cardiac output monitoring in major abdominal surgery: a prospective, randomized, multicenter, pragmatic trial: POEMAS Study (PeriOperative goal-directed thErapy in Major Abdominal Surgery). Anesth Analg. 2014;119(3):579–87. https://doi.org/10.1213/ANE.0000000000000295.

    Article  PubMed  Google Scholar 

  8. Salzwedel C, Puig J, Carstens A, Bein B, Molnar Z, Kiss K, Hussain A, Belda J, Kirov MY, Sakka SG, Reuter DA. Perioperative goal-directed hemodynamic therapy based on radial arterial pulse pressure variation and continuous cardiac index trending reduces postoperative complications after major abdominal surgery: a multi-center, prospective, randomized study. Crit Care. 2013;17(5):R191. https://doi.org/10.1186/cc12885.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pearse RM, Harrison DA, MacDonald N, Gillies MA, Blunt M, Ackland G, Grocott MP, Ahern A, Griggs K, Scott R, Hinds C, Rowan K, Group OS. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA. 2014;311(21):2181–90. https://doi.org/10.1001/jama.2014.5305.

    Article  CAS  PubMed  Google Scholar 

  10. Sun Y, Chai F, Pan C, Romeiser JL, Gan TJ. Effect of perioperative goal-directed hemodynamic therapy on postoperative recovery following major abdominal surgery-a systematic review and meta-analysis of randomized controlled trials. Crit Care. 2017;21(1):141. https://doi.org/10.1186/s13054-017-1728-8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Michard F, Giglio MT, Brienza N. Perioperative goal-directed therapy with uncalibrated pulse contour methods: impact on fluid management and postoperative outcome. Br J Anaesth. 2017;119(1):22–30. https://doi.org/10.1093/bja/aex138.

    Article  CAS  PubMed  Google Scholar 

  12. Silva ED, Perrino AC, Teruya A, Sweitzer BJ, Gatto CS, Simoes CM, Rezende EA, Galas FR, Lobo FR, Silva JMJ, Taniguchi LU, Azevedo LC, Hajjar LA, Mondadori LA, Abreu MG, Perez MV, Dib RE, Nascimento PDJ, Rodrigues RD, Lobo SM, Nunes RR, Assuncao MS. Brazilian Consensus on perioperative hemodynamic therapy goal guided in patients undergoing noncardiac surgery: fluid management strategy - produced by the Sao Paulo State Society of Anesthesiology (Sociedade de Anestesiologia do Estado de Sao Paulo—SAESP). Rev Bras Anestesiol. 2016;66(6):557–71. https://doi.org/10.1016/j.bjan.2016.09.013.

    Article  PubMed  Google Scholar 

  13. Radtke FM, Franck M, Lendner J, Kruger S, Wernecke KD, Spies CD. Monitoring depth of anaesthesia in a randomized trial decreases the rate of postoperative delirium but not postoperative cognitive dysfunction. Br J Anaesth. 2013;110(Suppl 1):i98–105. https://doi.org/10.1093/bja/aet055.

    Article  CAS  PubMed  Google Scholar 

  14. Chan MT, Cheng BC, Lee TM, Gin T, Group CT. BIS-guided anesthesia decreases postoperative delirium and cognitive decline. J Neurosurg Anesthesiol. 2013;25(1):33–42. https://doi.org/10.1097/ANA.0b013e3182712fba.

    Article  PubMed  Google Scholar 

  15. MacKenzie KK, Britt-Spells AM, Sands LP, Leung JM. (2018) Processed electroencephalogram monitoring and postoperative delirium: a systematic review and meta-analysis. Anesthesiology. https://doi.org/10.1097/ALN.0000000000002323.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Siddiqi N, Harrison JK, Clegg A, Teale EA, Young J, Taylor J, Simpkins SA. Interventions for preventing delirium in hospitalised non-ICU patients. Cochrane Database Syst Rev. 2016;3:CD005563. https://doi.org/10.1002/14651858.CD005563.pub3.

    Article  PubMed  Google Scholar 

  17. Inouye SK, van Dyck CH, Alessi CA, Balkin S, Siegal AP, Horwitz RI. Clarifying confusion: the confusion assessment method. A new method for detection of delirium. Ann Intern Med. 1990;113(12):941–8.

    Article  CAS  PubMed  Google Scholar 

  18. Wei LA, Fearing MA, Sternberg EJ, Inouye SK. The Confusion Assessment Method: a systematic review of current usage. J Am Geriatr Soc. 2008;56(5):823–30. https://doi.org/10.1111/j.1532-5415.2008.01674.x.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dalfino L, Giglio MT, Puntillo F, Marucci M, Brienza N. Haemodynamic goal-directed therapy and postoperative infections: earlier is better. A systematic review and meta-analysis. Crit Care. 2011;15(3):R154. https://doi.org/10.1186/cc10284.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kuper M, Gold SJ, Callow C, Quraishi T, King S, Mulreany A, Bianchi M, Conway DH. Intraoperative fluid management guided by oesophageal Doppler monitoring. BMJ. 2011;342:d3016. https://doi.org/10.1136/bmj.d3016.

    Article  PubMed  Google Scholar 

  21. Cannesson M, Ramsingh D, Rinehart J, Demirjian A, Vu T, Vakharia S, Imagawa D, Yu Z, Greenfield S, Kain Z. Perioperative goal-directed therapy and postoperative outcomes in patients undergoing high-risk abdominal surgery: a historical-prospective, comparative effectiveness study. Crit Care. 2015;19:261. https://doi.org/10.1186/s13054-015-0945-2.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Futier E, Constantin JM, Petit A, Chanques G, Kwiatkowski F, Flamein R, Slim K, Sapin V, Jaber S, Bazin JE. Conservative vs restrictive individualized goal-directed fluid replacement strategy in major abdominal surgery: a prospective randomized trial. Arch Surg. 2010;145(12):1193–200. https://doi.org/10.1001/archsurg.2010.275.

    Article  PubMed  Google Scholar 

  23. Myles PS, Bellomo R, Corcoran T, Forbes A, Peyton P, Story D, Christophi C, Leslie K, McGuinness S, Parke R, Serpell J, Chan MTV, Painter T, McCluskey S, Minto G, Wallace S. Australian, New Zealand College of anaesthetists clinical trials N, the A, New Zealand intensive care society clinical trials. Restrictive versus liberal fluid therapy for major abdominal surgery. N Engl J Med. 2018;378(24):2263–74. https://doi.org/10.1056/NEJMoa1801601.

    Article  PubMed  Google Scholar 

  24. Portela MC, Pronovost PJ, Woodcock T, Carter P, Dixon-Woods M. How to study improvement interventions: a brief overview of possible study types. BMJ Qual Saf. 2015;24(5):325–36. https://doi.org/10.1136/bmjqs-2014-003620.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Haynes AB, Weiser TG, Berry WR, Lipsitz SR, Breizat AH, Dellinger EP, Herbosa T, Joseph S, Kibatala PL, Lapitan MC, Merry AF, Moorthy K, Reznick RK, Taylor B, Gawande AA, Safe Surgery Saves Lives Study Group. A surgical safety checklist to reduce morbidity and mortality in a global population. N Engl J Med. 2009;360(5):491–9. https://doi.org/10.1056/NEJMsa0810119.

    Article  CAS  PubMed  Google Scholar 

  26. Pronovost P, Needham D, Berenholtz S, Sinopoli D, Chu H, Cosgrove S, Sexton B, Hyzy R, Welsh R, Roth G, Bander J, Kepros J, Goeschel C. An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med. 2006;355(26):2725–32. https://doi.org/10.1056/NEJMoa061115.

    Article  CAS  PubMed  Google Scholar 

  27. Vincent JL. We should abandon randomized controlled trials in the intensive care unit. Crit Care Med. 2010;38(10 Suppl):534–8. https://doi.org/10.1097/CCM.0b013e3181f208ac.

    Article  Google Scholar 

  28. Saturni S, Bellini F, Braido F, Paggiaro P, Sanduzzi A, Scichilone N, Santus PA, Morandi L, Papi A. Randomized Controlled Trials and real life studies. Approaches and methodologies: a clinical point of view. Pulm Pharmacol Ther. 2014;27(2):129–38. https://doi.org/10.1016/j.pupt.2014.01.005.

    Article  CAS  PubMed  Google Scholar 

  29. Michard F. Decision support for hemodynamic management: from graphical displays to closed loop systems. Anesth Analg. 2013;117(4):876–82. https://doi.org/10.1213/ANE.0b013e31827e5002.

    Article  PubMed  Google Scholar 

  30. Benes J, Giglio M, Brienza N, Michard F. The effects of goal-directed fluid therapy based on dynamic parameters on post-surgical outcome: a meta-analysis of randomized controlled trials. Crit Care. 2014;18(5):584. https://doi.org/10.1186/s13054-014-0584-z.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Calvo-Vecino JM, Ripolles-Melchor J, Mythen MG, Casans-Frances R, Balik A, Artacho JP, Martinez-Hurtado E, Serrano Romero A, Fernandez Perez C, Asuero de Lis S, Group FTI. Effect of goal-directed haemodynamic therapy on postoperative complications in low-moderate risk surgical patients: a multicentre randomised controlled trial (FEDORA trial). Br J Anaesth. 2018;120(4):734–44. https://doi.org/10.1016/j.bja.2017.12.018.

    Article  CAS  PubMed  Google Scholar 

  32. Saugel B, Vincent JL, Wagner JY. Personalized hemodynamic management. Curr Opin Crit Care. 2017;23(4):334–41. https://doi.org/10.1097/MCC.0000000000000422.

    Article  PubMed  Google Scholar 

  33. Futier E, Lefrant JY, Guinot PG, Godet T, Lorne E, Cuvillon P, Bertran S, Leone M, Pastene B, Piriou V, Molliex S, Albanese J, Julia JM, Tavernier B, Imhoff E, Bazin JE, Constantin JM, Pereira B, Jaber S, Group IS. Effect of individualized vs standard blood pressure management strategies on postoperative organ dysfunction among high-risk patients undergoing major surgery: a randomized clinical trial. JAMA. 2017;318(14):1346–57. https://doi.org/10.1001/jama.2017.14172.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Michard F, Mountford WK, Krukas MR, Ernst FR, Fogel SL. Potential return on investment for implementation of perioperative goal-directed fluid therapy in major surgery: a nationwide database study. Perioper Med (Lond). 2015;4:11. https://doi.org/10.1186/s13741-015-0021-0.

    Article  Google Scholar 

  35. Sadique Z, Harrison DA, Grieve R, Rowan KM, Pearse RM, group Os. Cost-effectiveness of a cardiac output-guided haemodynamic therapy algorithm in high-risk patients undergoing major gastrointestinal surgery. Perioper Med (Lond). 2015;4:13. https://doi.org/10.1186/s13741-015-0024-x.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Desiree Chappell, Louisville, KY, for English editing.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the study design and in the interpretation of data. MFL and LAM were involved in data collection and data analysis. MFL and FM drafted the manuscript, and all authors contributed to and approved the final version.

Corresponding author

Correspondence to Mariana F. Lima.

Ethics declarations

Conflict of interest

MFL, LAM and DBG have no conflict of interest to declare. AYC is the president of Fundação para Segurança do Paciente, a non-profit organization to improve patient safety. EHGJ is a member of the speakers’ bureau for Edwards Lifesciences. FM is the managing director of MiCo, a Swiss consulting firm specialized in medical e-nnovations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, M.F., Mondadori, L.A., Chibana, A.Y. et al. Outcome impact of hemodynamic and depth of anesthesia monitoring during major cancer surgery: a before–after study. J Clin Monit Comput 33, 365–371 (2019). https://doi.org/10.1007/s10877-018-0190-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-018-0190-8

Keywords

Navigation